• 제목/요약/키워드: Single-Multi Degree of Freedom

검색결과 78건 처리시간 0.026초

6자유도 진동 흡진기의 기하적 설계 이론 (Geometrical Design Theory of a 6 DOF Vibration Absorber)

  • 장선준;최용제
    • 한국정밀공학회지
    • /
    • 제22권7호
    • /
    • pp.191-199
    • /
    • 2005
  • Many researchers have been investigating the design of multi-mode absorption vibration absorber for multi degree-of-freedom (DOF) system. The approach taken to this problem has been to find the optimized constants of stiffness and damping for the given set of single-DOF absorbers or single multi-DOF absorber attached to a multi degree-of-freedom system. This paper presents a novel geometrical and direct design theory of a 6 DOF vibration absorber via screw theory. Theoretical development is demonstrated by a practical example in which the diagonal stiffness matrix is synthesized using rectangular configuration of springs. The performance of this absorber is simulated by modal analysis.

Numerical investigation on multi-degree-freedom nonlinear chaotic vibration isolation

  • Jiang, Guoping;Tao, Weijun
    • Structural Engineering and Mechanics
    • /
    • 제51권4호
    • /
    • pp.643-650
    • /
    • 2014
  • A chaotic vibration isolation system is designed according to the chaotic vibration theory in this paper. The strong nonlinearity is generated by the system. Line spectra in the radiated noise maybe easily detected caused by marine vessels. It is Important to reduce the line spectra by improving the acoustic stealth of marine vessels. A multi-degree-freedom (MDF) nonlinear vibration isolation system (NVIS) system is setup by the experiment and finite element method. The model is established with finite element method. The results show that the behavior of the device gradually varies from period bifurcation into chaotic state and the line spectrum is changed from single spectral structure into broadband spectral structure. It is concluded that chaotic vibration isolation is preferable contrasted on line spectra isolation.

Estimation of earthquake induced story hysteretic energy of multi-Story buildings

  • Wang, Feng;Zhang, Ning;Huang, Zhiyu
    • Earthquakes and Structures
    • /
    • 제11권1호
    • /
    • pp.165-178
    • /
    • 2016
  • The goal of energy-based seismic design is to obtain a structural design with a higher energy dissipation capacity than the energy dissipation demands incurred under earthquake motions. Accurate estimation of the story hysteretic energy demand of a multi-story structure is the key to meeting this goal. Based on the assumption of a mode-equivalent single-degree-of-freedom system, the energy equilibrium relationship of a multi-story structure under seismic action is transformed into that of a multi-mode analysis of several single degree-of-freedom systems. A simplified equation for the estimation of the story seismic hysteretic energy demand was then derived according to the story shear force and deformation of multi-story buildings, and the deformation and energy relationships between the mode-equivalent single-degree-of-freedom system and the original structure. Sites were categorized into three types based on soil hardness, namely, hard soil, intermediate hard (soft) soil, and soft soil. For each site type, a 5-story and 10-story reinforced concrete frame structure were designed and employed as calculation examples. Fifty-six earthquake acceleration records were used as horizontal excitations to validate the accuracy of the proposed method. The results verify the following. (1) The distribution of seismic hysteretic energy along the stories demonstrate a degree of regularity. (2) For the low rise buildings, use of only the first mode shape provides reasonably accurate results, whereas, for the medium or high rise buildings, several mode shapes should be included and superposed to achieve high precision. (3) The estimated hysteretic energy distribution of bottom stories tends to be underestimated, which should be modified in actual applications.

Towards improved floor spectra estimates for seismic design

  • Sullivan, Timothy J.;Calvi, Paolo M.;Nascimbene, Roberto
    • Earthquakes and Structures
    • /
    • 제4권1호
    • /
    • pp.109-132
    • /
    • 2013
  • Current codes incorporate simplified methods for the prediction of acceleration demands on secondary structural and non-structural elements at different levels of a building. While the use of simple analysis methods should be advocated, damage to both secondary structural and non-structural elements in recent earthquakes have highlighted the need for improved design procedures for such elements. In order to take a step towards the formation of accurate but simplified methods of predicting floor spectra, this work examines the floor spectra on elastic and inelastic single-degree of freedom systems subject to accelerograms of varying seismic intensity. After identifying the factors that appear to affect the shape and intensity of acceleration demands on secondary structural and non-structural elements, a new series of calibrated equations are proposed to predict floor spectra on single degree of freedom supporting structures. The approach uses concepts of dynamics and inelasticity to define the shape and intensity of the floor spectra at different levels of damping. The results of non-linear time-history analyses of a series of single-degree of freedom supporting structures indicate that the new methodology is very promising. Future research will aim to extend the methodology to multi-degree of freedom supporting structures and run additional verification studies.

일반 시설물의 지반-구조물 상호작용 해석 기준에 대한 고찰 (Overview on Standards for Soil-Structure Interaction Analysis used in Design of Infrastructure)

  • 김현욱;하정곤;김동수;주광호
    • 한국지진공학회논문집
    • /
    • 제21권5호
    • /
    • pp.227-236
    • /
    • 2017
  • This study reviews concepts, theories and formulas included in standards on soil-structure interaction and also shows practical example of application for engineers. Real structures are 3 dimensional and multi degree of freedom but they are often idealized to single degree of freedom for convenience. In this study, detailed procedures to calculate soil spring constants and damping coefficients and method to model soil-structure system are explained. Additionally, case studies to judge fixed base condition and evaluation of applicability of simple analysis method based on response spectra are performed.

회전 변형항을 고려한 진동파워 전달 경로별 기여도 분석 : 압축기계에의 응용 (Vibrational Power Path Analysis with Rotational Terms Included and Its Application to Compressor System)

  • 이호정;김광준
    • 한국소음진동공학회논문집
    • /
    • 제15권3호
    • /
    • pp.280-289
    • /
    • 2005
  • A single degree of freedom system and transmissibility are key concepts in many problems of vibration isolation. In order to apply this approach, however, several assumptions must be satisfied, which are often not realistic. For examples, in practical systems, vibration transmissions at multi-point with multi-degree of freedom(translational and rotational DOF) take place and mobilities or impedances of receiver structures cannot be ignored any more especially over high frequency range. Therefore, a multi-dimensional treatment is required for accurate estimation of dynamic behavior of the system. In this paper, an approach using vibrational power flow is introduced to deal with analysis of multi-dimensional vibration isolation system in a more practical way and in aspects of vibration isolations and vibration path analysis. Procedures of this approach and some results of research for vibrational power path analysis with rotational terms included are presented. Difficulties in this method are also discussed.

단일 진동체의 진동 흡진기 설계 기법 (Design of a Vibration Absorber for an Elastically Suspended Rigid Body)

  • 김동욱;최용제
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.190-197
    • /
    • 2002
  • A new design methodology is presented for the multi-degree-of-freedom vibration absorber for an elastically suspended rigid body with planes of symmetry in general motion. Unlike the common single degree-of-freedom vibration absorber, the presented methodology makes use of both linear and rotational properties of the absorber. It is suggested that an absorber is designed separately for the in-plane and out-of-plane vibration modes and thereby combined the two cases for a six-degree-of-freedom absorber. The nine possible design methods are suggested for the six-degree-of-freedom absorber when an elastically suspended rigid body has one, two, or three planes of symmetry.

  • PDF

다층 구조물과 등가 단자유도계의 에너지 요구량 비교 (Comparison of Energy Demand in Multi-Story Structures and Equivalent SDOF Systems)

  • 최현훈;원영섭;김진구
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.19-26
    • /
    • 2003
  • In energy-based design, the structures are generally transformed into equivalent SDOF systems to obtain the input and the dissipated energy. In this study the energy demands in multi-story structures were compared with that of equivalent single degree of freedom systems to validate the transformation method. Three-, eight-, and twenty-story steel moment-resisting frames and buckling restrained braced frames are compared with those of equivalent single degree of freedom systems. Sixty earthquake ground motions recorded in different soil conditions were used to compute the input and hysteretic energy demands in model structures. According to the analysis results, in 3 and 8-story structures the hysteretic energy demands computed in the equivalent SDOF structures are compatible with those computed in the original MDOF structures, while in the 20-story structures the transformed equivalent structures underestimated the hysteretic energy demands.

  • PDF

슬라이딩 모드 제어기 설계를 위한 LQR방법을 이용한 최적 슬라이딩 표면 결정 (Optimal Sliding Surface using LQR Method For Design of Sliding Mode Controller)

  • 이상현;민경원;이영철;황재승
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.419-426
    • /
    • 2003
  • An efficient procedure using LQR method for determining optimal sliding surfaces appropriate for different controller types is provided. The parametric evaluation of the dynamic characteristics of sliding surfaces is peformed in terms of SMC controller performance of single-degree-of-freedom(SDOF) systems. The control force limit is considered in this procedure. Numerical simulations for multi-degree-of-freedom(MDOF) systems verify the effectiveness of proposed method.

  • PDF

해상풍력터빈에 대한 하중 모사 방법 연구 (Load simulation for offshore wind turbine)

  • 석상민;이성건;정진화;박현철
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.58.1-58.1
    • /
    • 2011
  • In this paper, the purpose is a study on structural analysis for offshore wind turbine using commercial code. Because offshore wind turbine is subjected to great wind and wave force, it is necessary to analyse the dynamics and minimize the response of wind turbine. The offshore wind turbine tower is modelled as a single degree of freedom and multi degree of freedom structure. It is assumed that the blades, nacelle are composed of concentrated masses.

  • PDF