• Title/Summary/Keyword: Single-Carrier Frequency Domain Equalizer

Search Result 22, Processing Time 0.018 seconds

Performance Comparison of Multi-Carrier and Single-Carrier Based Transmission Techniques for UHDTV Systems (UHDTV 시스템을 위한 다중 반송파와 단일 반송파 기반 전송 방식의 수신 성능 비교)

  • Lee, Yu-Ri;Kang, In-Woong;Kim, Hyoung-Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.7
    • /
    • pp.380-388
    • /
    • 2014
  • Transmission methods for terrestrial UHDTV broadcasting have been actively studied in order to provide enhanced broadcasting service in many countries. Most of the countries are considering multi-carrier transmission methods based on OFDM and some of them have performed UHDTV experimental broadcasting by using the DVB-T2 standard with the adoption of an improved data compression technique. However, since single carrier transmission methods, which are known to be susceptible to multi-path fading, could remedy this defect by using the SC-FDE method where a frequency domain equalizer is utilized in the receiver, they may achieve a similar transmission performance with multi-carrier transmission methods. In consideration of these circumstances, we compare the transmission performances of two-type methods to provide a decision criterion on a suitable transmission method for UHDTV broadcasting.

Correction of Mean Phase Error for OFDM and SC-CP Systems using Decision-Directed Method (OFDM 및 SC-CP 시스템에 대한 결정지향 방식의 평균위상에러 정정)

  • Kim Ji-Heon;Kim Whan-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.12
    • /
    • pp.77-84
    • /
    • 2005
  • The orthogonal frequency division multiplexing (OFDM) technique and the single carrier with cyclic prefix (SC-CP) scheme are very attractive solutions for wireless applications, being computationally efficient since equalization is performed in the frequency domain. The equalizer could not entirely handle significant mean. Doppler shift. This motivates the use of a phase error tracking loop that operates jointly with the frequency equalizer. This paper describes the effect of the mean phase error and the performance of the proportional equalizer coupled with a phase error tracking loop based on decision-directed method. Furthermore, simulation results show that we can reduce the computational toad of the tracking loop with minimal performance degradation.

Achievable Bit Rate Comparison of Cyclic Prefixed CI/OFDM System and Single Carrier System (Cyclic Prefixed CI/OFDM 시스템과 단일반송파 시스템의 ABR 비교 분석)

  • Zheng, Hui;Hwang, Jae-Ho;Hwnag, Dae-Geun;Kim, Jae-Moung
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.1
    • /
    • pp.6-16
    • /
    • 2010
  • Since OFDM system suffers from high peak-to average power ratio(PAPR) drawbacks, more energy has been converted to seek for a new substitutable system which can maintain OFDM system's inherent virtues while avoid its defects. Consequently, a new multicarrier system called as CI/OFDM system has been proposed which applied carrier interferometry(CI) code to OFDM system. Due to its low PAPR advantage and orthogonal property, it has received more and more attention. Simultaneously, an old technique called single carrier(SC) system has retaken its attractions for the same purposes. This paper analyzes two cyclic prefixed transmission schemes variants of OFDM system: 1.carrier interferometry-Orthogonal Frequency-Division Multiplexing (CI/OFDM); 2. Cyclic prefixed single carrie(CP-SC) with frequency domain equalization. We compare the achievable bit rate transmission of the two systems in terms of signal to noise ratio(SNR) by mathematical derivation. We demonstrated that CI/OFDM achieves a bit higher transmission bit rate to that of the CP-SC with frequency domain equalizer.

Link-level Performance of SC-FDM using a Turbo Equalizer (터보 등화기를 적용한 SC-FDM의 링크-레벨 성능)

  • Lee, Joongho;Lim, Jaehong;Yoon, Seokhyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.26-32
    • /
    • 2014
  • Single-Carrier Frequency division multiplexing (SC-FDM) has been selected for the uplink transmission technique in 3GPP-LTE since it has an advantage of low peak-to-average power ratio (PAPR) in user's perspective. The receiver typically uses a frequency domain equalizer, which, however, suffers from noise boost and/or residual ISI especially when the channel has deep nulls. In this paper, we propose using turbo equalizer to mitigate such a problem. We provide link level performance comparison and an insight into how many iteration is needed for reasonable performance and complexity.

Compensation of Phase Noise and IQ Imbalance in the OFDM Communication System of DFT Spreading Method (DFT 확산 방식의 OFDM 통신 시스템에서 위상잡음과 직교 불균형 보상)

  • Ryu, Sang-Burm;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.1
    • /
    • pp.21-28
    • /
    • 2009
  • DFT-spread OFDM(Discrete Fourier Transform-Spread Orthogonal Frequency Division Multiplexing) is very effective for solving the PAPR(Peak-to-Average Power Ratio) problem. Therefore, the SC-FDMA(Single Carrier-Frequency Division Multiple Access) which is basically same to the DFT spread OFDM was adopted as the uplink standard of the 3GPP LTE ($3^{rd}$ Generation Partnership Project Long Term Evolution). Unlike the ordinary OFDM system, the SC-FDMA using DFT spreading method is vulnerable to the ICI(Inter-Carrier Interference) problem caused by the phase noise and IQ(In-phase/Quadrature) imbalance and effected FDE(Frequency Domain Equalizer). In this paper, the ICI effects from the phase noise and IQ imbalance which can be problems in uplink transmission are analyzed according the back-off level of HPA. Next, we propose the equalizer algorithm to remove the ICI effects. This proposed equalizer based on the FDE can be considered as up-graded and improved version of PNS(Phase Noise Suppression) algorithm. This proposed equalizer effectively compensates the ICI resulting from the phase noise and IQ imbalance. Finally, through the computer simulation, it can be shown that about SNR=14 dB is required for the $BER=10^{-4}$ after ICI compensation when the back-off is 4.5 dB, $\varepsilon=0.005$, $\phi=5^{\circ}$, and $pn=0.06\;rad^2$.

Performance Comparison of Orthogonal Frequency Division Multiplexing and Single Carrier Transmission with Frequency Domain Equalizer in High Speed Mobile Environment (고속 이동 환경 하에서의 직교주파수분할다중화 및 주파수 영역 등화기를 사용한 단일반송파 시스템의 성능 평가)

  • Seo, Kang-Woon;Yoon, Seok-Hyun;Kim, Baek-Hyun;Kim, Yong-Kyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.11
    • /
    • pp.9-16
    • /
    • 2011
  • We need to establish standard for the ICT based on train control system. In order to solve the ISI problem, this paper evaluate the performance of OFDM and FDE system. We seem that OFDM system is better than FDE system. In order to solve ISI problem, SC System is needed a equalizer. And another method is OFDM System. If system is used SC with a equalizer, It is better than OFDM in terms of PAPR, but this system is not easy to use Multi-Antenna technique, i.e., beam-forming and MIMO-multiplexing. And If system is used high-order modulation, BER performance is worse than OFDM. If we think about in terms of PAPR problem, considerations are considered not significant because the size of relays is not considered in the communication between trains and ground.

SC-FDE System Using Decision-Directed Method Over Time-Variant Fading Channels (시변 페이딩 채널에 대한 결정 지향 방식의 SC-FDE 시스템)

  • Kim, Ji-Heon;Yang, Jin-Mo;Kim, Whan-Woo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.227-234
    • /
    • 2007
  • This paper describes a transmission method based on a single carrier with frequency domain equalization (SC-FDE) scheme with cyclic prefix(CP). The SC-FDE has similar features with orthogonal frequency division multiplexing(OFDM). Similar to OFDM, a SC-FDE system is computationally efficient since equalization is reformed on a block of data in the frequency domain. Especially, it has the advantage of low sensitivity to nonlinear distortion compared to OFDM. In this paper, we design a SC-FDE receiver using decision-directed method, and present simulation results.

Design of SC-FDE System Using CAZAC Sequence (CAZAC Sequence를 이용한 SC-FDE 시스템 설계)

  • Kang, Hoon;Im, Se-Bin;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2A
    • /
    • pp.169-178
    • /
    • 2007
  • In this paper, we propose a signal structure and its optimum receiver to improve performance of SC-FDE(Single Carrier with Frequency Domain Equalization) system. Conventional SC-FDE systems have a drawback of power unbalance in frequency domain due to generation of pilot signals in time domain. The unbalanced power in frequency domain induces a channel estimation error and the performance of the receiver is degraded significantly. To overcome the drawback we apply CAZAC sequence which has constant power distribution in time and frequency domain. We design the signal structure to improve the performance with the repeated CAZAC sequence, and we design a receiver to optimize the proposed structure. Computer simulation results show that the proposed structure is superior to the conventional structure considering frame synchronization, frequency synchronization and channel equalization on typical wireless mobile channel environment.

Noise Whitening Decision Feedback Equalizer for SC-FDMA Receivers (SC-FDMA 수신기를 위한 잡음 백색화 판정궤환 등화기)

  • Lee, Su-Kyoung;Park, Yong-Hyun;Seo, Bo-Seok
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.986-995
    • /
    • 2011
  • In this paper, we propose a noise whitening decision feedback equalizer for single carrier frequency division multiple access (SC-FDMA) receivers. SC-FDMA has the same advantage as that of orthogonal frequency division multiple access (OFDMA) in which the multipath effect can be removed easily, and also solves the problem of high peak to average power ratio (PAPR) which is the main drawback of OFDMA. Although SC-FDMA is a single carrier transmission scheme, a simple frequency domain linear equalizer (FD-LE) can be implemented as in OFDMA, which can dramatically reduce the equalizer complexity. Moreover, some residual intersymbol interference in the output of the FD-LE can be further removed by an additional nonlinear decision feedback equalizer (DFE) in time domain, because the time domain signal is a digitally modulated symbol. In the conventional DFE, however, the noise is not white at the input of the decision device and correspondingly the decision is not optimum. In this paper, we propose an improved DFE scheme for SC-FDMA systems where a linear noise whitening filter is inserted before the decision device of the conventional DFE scheme. Through computer simulations, we compare the bit error rate performance of the proposed DFE scheme with the conventional equalizers.

Introductions of Pre-Rake with Frequency Domain Equalizer and Cyclic Prefix Reduction Method in CDMA/TDD Multi-code Transmission (CDMA/TDD 다중코드 전송에서 주파수 도메인 등화기와 결합된 Pre-Rake 와 Cyclic Prefix 최소화 방법)

  • Lee, Jun-Hwan;Jeong, In-Cheol
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.86-96
    • /
    • 2011
  • In this paper we propose a Pre-rake system applied with a frequency domain equalizer in TDD/CDMA multi-code transmission. The Pre-rake system has been well known technique in TDD/CDMA to make a receiver simple. However, it still has residual losses of path diversity and signal to noise ratio (SNR). However, gathering all the residual paths demands an additional hardware such as a rake combiner at the receiver. For the reason Pre/Post-rake system has already been proposed at up/downlink correlated channel conditionunder the assumption of noisier channel. There is a trade-off between the first purpose of Pre-rake that makes hardware simple at the receiver and the performance improvement. From the point the frequency domain equalizer (FDE) can be considered in Pre/Post-rake to supply the receiver with the flexible equalizing methods with rather reduced complexity compared with time domain rake combiner or equalizers. Pre-rake itself increases the number of multipath, which results from the convolution of Pre-rake filter and wireless channel, and FDE must be well matched to Pre/Post-rake, while it considers the relationship of hardware complexity and the performance. In this paper, the Pre-rake/Post-FDE system is introduced at TDD/CDMA multi-code transmission. In addition, the cyclic prefix reduction method in the proposed system is introduced, and the theoretical analysis to the proposed system is given by assuming Gaussian approximation, and finally the numerical simulation results are provided.