• Title/Summary/Keyword: Single strand DNA

Search Result 183, Processing Time 0.021 seconds

Evaluation of protective effect of peach kernel extracts on radiation-induced DNA damage in human blood lymphocytes in the single cell gel electrophoresis assay (단세포 겔 전기영동법을 이용한 사람 림프구 DNA 손상에 대한 복숭아씨 추출물의 방사선 방어효과 평가)

  • Kim, Jin-Kyu;Park, Tae-Won;Lee, Chang-Joo;Chai, Young-Gyu
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.2
    • /
    • pp.93-99
    • /
    • 1999
  • The alkaline single-cell gel electrophoresis (SCGE) assay, called the comet assay, has been applied to the detection of DNA damage from a number of chemical and biological factors in vivo and in vitro. The comet assay is a novel method to assess DNA single-strand breaks, alkali-labile sites in individual cells. The effect of peach kernel extracts on radiation-induced DNA damage in human blood lymphocytes was evaluated by the SCGE assay. The lymphocytes, with or without pretreatment of the extracts, were exposed to 0, 0.1, 0.3, 0.5, 1.0 and 2.0 Gy of $^{60}Co$ gamma ray. Significantly increased tail moment, which was a marker of DNA strand breaks in the comet assay, showed an excellent dose-response relationship. The treatment of the peach kernel extracts reduced the DNA damage by 30 % in irradiated groups as compared to that in non-treated control groups. The result indicates that the extracts shows radioprotective effect on lymphocyte DNA when assessed by the comet assay.

  • PDF

Induction of Apoptosis and Single Strand Breaks by Extract of Pulsatilla Koreana (SB-31).

  • Kim, Sam-Yong;Kim, Hyun-Soo;Park, Sang-Jun;Kim, Jong-Suk;Park, Jee-Young;Yoon, Whan-Joong;Yoon, So-Hyun;Jo, Deog-Yeon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.174-174
    • /
    • 1996
  • Extract of Pulsatilla Koreana (SB-31) showed promising antitumor activity in vitro (J. Kor Cancer Asso 26:959-963, 1994). We studied the mechanism of cytotoxicity of SB-31. HL-60 cells were cocultivated with various concentrations of SB-31 for 5 hours. The DNAs from HL-60 cells exposed to SB-31 showed the ladder pattern typical of apoptosis. Effect of SB-31 on topoisomerase I activity was determined by slight modification of the method by E. Aflalo(1994). The pBR322 DNA showed dose-dependent increase of R-Form DNA upon incubation with SB-31. The topoisomerase Ⅰ-like activity (Increase of R-Form DNA) was accentuated with higher dose of SB-31. It is postulated that SB-31, which is a fermentation product of Pulsatilla koreana and which loses its activity when kept in ambient temperature for more than 96 hours, may contain topoisomerase Ⅰ-like activity and the enhanced excessive single strand breaks induced by 55-31 may result in apoptosis.

  • PDF

Distinct Oxidative Damage of Biomolecules by Arrays of Metals Mobilized from Different Types of Airborne Particulate Matters: SRM1648, Fine (PM2.5), and Coarse (PM10) Fractions

  • Park, Yong Jin;Lim, Leejin;Song, Heesang
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.139-143
    • /
    • 2013
  • This study was performed to examine the in vitro toxicities which are incurred due to the mobilization metals from standard reference material (SRM) 1648, fine ($PM_{2.5}$), and coarse ($PM_{10}$) particulate matter collected in Seoul metropolitan area. DNA single strand breaks of approximately 74% and 62% for $PM_{2.5}$ and for $PM_{10}$, respectively, were observed in the presence of chelator (EDTA or citrate)/reductant (ascorbate), as compared to the control by 2% without chelator or reductant. $PM_{2.5}$ induced about 40% more carbonyl formation with proteins in the presence of EDTA/ascorbate than $PM_{10}$. Therefore, more damage to biomolecules was incurred upon exposure to $PM_{2.5}$ than to $PM_{10}$. The treatment of a specific chelator, desferrioxamine, to the reaction mixture containing chelator plus reductant decreased the extent of damage to DNA to the level of the control, but did not substantially decrease the extent of damage to proteins. This suggests that different arrays of metals were involved in the oxidation of DNA and proteins.

Benzopyrene에 노출된 광어(Conger myriaster) 혈액 cells과 개조게(Saxidomus purpurata) 조직 cells을 이용한 in vivo DNA single strand breakage

  • 김소정;오로라;하병혁;최은석;장만;이택견
    • Proceedings of the Korea Society of Environmental Biology Conference
    • /
    • 2002.11a
    • /
    • pp.145-153
    • /
    • 2002
  • 유해 화학 물질류에 의해 오염된 해양 환경 시료의 환경독성 수준을 평가하기 위하여 다양한 화학물질에 대해 민감성이 우수한 생물학적 독성평가기법을 개발 하고자하였다. 지속성 유기오염 물질 중 다환 방향 족 탄화수소(PAHs)를 처리한 광어(Conger myriaster)와 개조개(Saxidomus pupurata)의 DNA 손상정도를 single cell gel electrophoresis assay(comet assay)를 통해 분석하였다. PAHs 중 광양만에서 높은 농도로 검출되는 benzo(a)pyrene을 농도별(0, 10, 50, 100 ppb)로 처리한 후 2일과 4일에 광어의 혈액세포와 개조개의 근육세포를 채취해 comet assay를 실시하였다. benso(a)pyrene에 대한 DNA 손상정도를 처리된 농도와 생물종에 따라 다르게 나타났는데 광어의 혈액세포는 2일에 가장 DNA 손상정도가 높았고, 4일에는 회복되는 경향을 나타냈다. 개조개의 근육세포는 시간이 지나면서 DNA 손상정도가 증가하는 경향을 보였다. 이와 같은 결과는 comet assay 기법이 유해 화학물질로 오염된 해양생물 종의 환경독성을 검색하는 유용한 수단이 될 수 있음을 보여준다.

  • PDF

Inhibitory Effect of Korean Fermented Soybean (Chungkookjang) Extract and Genistein Against Trp-P-1 Induced Genotoxicity in HepG2 Cells

  • Song, Eun Jeong;Kim, Nam Yee;Heo, Moon Young
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.3
    • /
    • pp.171-178
    • /
    • 2017
  • This study evaluated the protective effect of Chungkookjang (CKJ) extract, a Korean traditional fermented soybean product made from Bacillus species in rice straw and boiled soybean, and one of its main flavonoids, genistein, against Trp-P-1 induced cytotoxicity and DNA damage in HepG2 cells. CKJ and genistein exhibited protective effect against Trp-P-1 induced cytotoxicity and Trp-P-1 induced DNA single strand breaks. CKJ and genistein inhibited Trp-P-1 induced CYP1A1 and CYP1A2 transcription in HepG2 cells. Our results indicated that CKJ and genistein have the protective effect against Trp-P-1 induced cytotoxicity and DNA damage. Via inhibiting expression of CYP1A1 and CYP1A2. CKJ can be used as a promising functional food material that prevents the genotoxicity induced by carcinogens produced by the heat treatment of foods such as heterocyclic amines (HCAs) that cause genomic instability.

Effects of 60-Hz Time-Varying Electric Fields on DNA Damage and Cell Viability Support Negligible Genotoxicity of the Electric Fields

  • Yoon, Yeo Jun;Li, Gen;Kim, Gyoo Cheon;Lee, Hae June;Song, Kiwon
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.3
    • /
    • pp.134-141
    • /
    • 2015
  • The effect of a 60 Hz time-varying electric field was studied using a facing-electrode device (FED) and a coplanar-electrode device (CED) for further investigation of the genotoxicity of 60 Hz time-varying magnetic field (MF) from preceding research. Neither a single 30-minute exposure to the CED or to the FED had any obvious biological effects such as DNA double strand break (DSB) and apoptosis in cancerous SCC25, and HeLa cells, normal primary fibroblast IMR90 cells, while exposures of 60 Hz time-varying MF led to DNA damage with induced electric fields much smaller than those used in this experiment. Nor did repetitive exposures of three days or a continuous exposure of up to 144 hours with the CED induce any DNA damage or apoptosis in either HeLa or IMR90 cells. These results imply that the solitary electric field produced by time-varying MF is not a major cause of DSBs or apoptosis in cancer or normal cells.

Authentication of Salted-dried Fish Species Using Polymerase Chain Reaction-Single Strand Conformational Polymorphism and Restriction Analysis of Mitochondrial DNA

  • Kim, Joo-Shin;Chu, Kin Kan Astley;Kwan, Hoi Shan;Chung, Hau Yin
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.3
    • /
    • pp.133-139
    • /
    • 2008
  • Molecular techniques, including restriction fragment length polymorphism(RFLP) and polymerase chain reaction-single strand conformational polymorph isms(PCR-SSCP), were developed to identify salted, dried threadfin(Eleutheronema tetradactylum) and white herring(Ilisha elongata) fish. Using PCR with universal primers, conserved 367-bp fragments of the cytochrome b gene were amplified from fresh fish samples and sequenced. The sequences were then searched for specific restriction sites. The digestion of the PCR products with the endonucleases AvaI, FokI, MboII, and MspI generated RFLP, which was used to identify the commercial products. Similarly, the amplified PCR-SSCP products were developed and the products tested. Overall, similar patterns were found in the majority of the fresh and processed products. Based on the results, both RFLP and PCR-SSCP were useful in determining and validating the authenticity of the fish species used to prepare the commercial salted, dried products. A similar approach can be applied to other species.

Effect of Cobaltous Chloride on the Repair of UV-induced DNA Damage (UV에 의해 손상된 DNA 회복에 미치는 cobaltous chloride의 효과)

  • Kim, Kug-Chan;Kim, Yung-Jin;Lee, Kang-Suk
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.2
    • /
    • pp.71-78
    • /
    • 1995
  • To develop methods to reduce radiation risk and apply such knowledge to improvement of radiation protection, the effects of cobaltous chloride known as bioantimutagen on the function of E. coli RecA protein involved in the repair of DNA damage were examined. The results demonstrated two distinct effects of cobaltous chloride on the RecA protein function necessary for the strand exchange reaction. Cobaltous chloride enhanced the ability of RecA protein to displace SSB protein from single-stranded DNA and the duplex DNA-dependent ATPase activity. RecA protein was preferentially bound with UV-irradiated supercoiled DNA as compared with nonirradiated DNA The binding of RecA protein to UV-irradiated supercoiled DNA was enhanced in a dose-dependent manner. It is likely that studies on the factors affecting repair efficiency and the DNA repair proteins may provide information on the repair of ionizing radiation-induced DNA damage and the mechanism for DNA radioprotection.

  • PDF

Regulation of Gene Expression and 3-Dimensional Structure of DNA (유전자 발현 조절과 DNA 3차원적 구조와의 관계)

  • 김병동
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.149-155
    • /
    • 1987
  • Growth and development of a higher plant, or any living organism for that matter, could be defined as an orderly expression of the genome in time and space in close interaction with the environment. During differentiation and development of a tissue or organ a group of genes must be selectively turned on or turned off mainly by trans-acting regulators. In this general concept of regulation of regulation of gene expression, a DNA molecule is recognized at a specific nucleotide sequence by DNA-binding factors. Molecular biology of the regulatory factors such as hormones, and their receptors, target DNA sequences and DNA-binding proteins are well advanced. What is not clearly understood is the molecular basis of the interactions between DNA and binding factors, expecially of the usages of the dyad symmetry of the target DNA sequences and the dimeric nature of the DNA-binding proteins. A unique 3-dimensional structure of DNA has been proposed that may play an important role in the orderly expression of the gene. A foldback intercoil (FBI) DNA configuration which was originally found by electron microscopy among mtDNA molecules from pearl millet has some unique features. The FBI configuration of DNA is believed to be formed when a flexible double helix folds back and interwines in the widened major grooves resulting in a four stranded, intercoil DNA whose thickness is the same as that of double stranded DNA. More recently, the FBI structure of DNA has been also induced in vitro by a novel enzyme which was purified from pearl millet mitochondria. It has been proposed that the FBI DNA could be utillized in intramolecular recombination which leads to inversion or deletion, and in intermolecular recombination which can lead to either site-specific recombination, genetic recombination via single strand invasion, or cross strand recombination. The structure and function of DNA in 3-dimensional aspect is emphasized for better understanding orderly expression of genes during growth and development.

  • PDF

Effects of 835-MHz Radiofrequency Radiation on the Chromosomal DNA of Mouse Thymic Lymphoma L5178Y $Tk^{+/-}$ Cells

  • Choi, Jong-Soon;Son, TaeHo;Chang, Sung-Keun;Hong, Sae-Yong
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.4
    • /
    • pp.507-512
    • /
    • 2004
  • This study was focused on the risk assessment of whether radiofrequency electromagnetic fields generated by mobile phone is cytogenetically toxic or not. We conducted the effects of 835-MHz electromagnetic field (EMF) on DNA strand breaks in mouse thymic lymphoma L5178Y $Tk^{+/1-}$ cells using alkaline comet assay. EMF frequency 835-MHz we chosen is one of the most popular communication frequency bands in Korean code-division multiple-access (CDMA) mobile phone system. The cells were exposed to 835-MHz EMF alone or 835-MHz EMF combined with cyclophosamide(CPA) or 4-nitroquinoline-1-oxide (4NQO) at specific absorption rate (SAR) of 4.0 W $kg^{-l}$ for 24 and 48hrs. DNA damage expressed as tail moment was increased more than two-fold after exposure to 835-MHz EMF for 24 and 48hr. In particular, CPA for 48hr and 4NQO for 24 hr enhanced notably the tail moment to 9-fold and 16-fold in the presence of 835-MHz EMF, respectively, compared to each single treatment. From these results, it appears that exposure to CDMA-mobile phone radiation at 835-MHz frequency may potentiate DNA strand breaks of mouse thymic lymphoma L5178Y $Tk^{+/1-}$;cells under the defined conditions of this study.