• Title/Summary/Keyword: Single sequence

Search Result 1,401, Processing Time 0.029 seconds

The Starting Characteristics of Single-Phase Induction Motor Using Sequence Controller (순서접속제어에 의한 단상유도전동기의 기동특성)

  • 박수강;성경민;조금배;오금곤;백형래;박해암
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.76-79
    • /
    • 1996
  • The most common for starting a single phase induction motor is to install a starting condenser and a centrifugal switch in series with the auxiliary winding. Though this method is simple, life of single phase induction motor is short because of malfunction of a starting condenser and a centrifugal switch and efficiency improvement has limitation. In this paper, the starting characteristics of SPIM is improved by sequence voltage control strategy of auxiliary winding in removing a starting condenser and a centrifugal switch. Finally, the excellent starting performance of SPIM is shown through simulation and experimental results.

  • PDF

Scheduling for Mixed-Model Assembly Lines in JIT Production Systems (JIT 생산 시스템에서의 혼합모델 조립라인을 위한 일정계획)

  • Ro, In-Kyu;Kim, Joon-Seok
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.17 no.1
    • /
    • pp.83-94
    • /
    • 1991
  • This study is concerned with the scheduling problem for mixed-model assembly lines in Just-In-Time(JIT) production systems. The most important goal of the scheduling for the mixed-model assembly line in JIT production systems is to keep a constant rate of usage for every part used by the systems. In this study, we develop two heuristic algorithms able to keep a constant rate of usage for every part used by the systems in the single-level and the multi-level. In the single-level, the new algorithm generates sequence schedule by backward tracking and prevents the destruction of sequence schedule which is the weakest point of Miltenburg's algorithms. The new algorithm gives better results in total variations than the Miltenburg's algorithms. In the multi-level, the new algorithm extends the concept of the single-level algorithm and shows more efficient results in total variations than Miltenburg and Sinnamon's algorithms.

  • PDF

A Study on the Blocking Probabilities of Single-buffered switching Networks with Time Slot Sequence Integrity of Multi-slot Calls (다중스롯호의 타임스롯 순서제어를 고려한 단일 버퍼 스위치의 호손율 특성에 관한 연구)

  • 성단근;정민영;강기원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.12
    • /
    • pp.1300-1312
    • /
    • 1991
  • In this paper we syudy the time slot sequence integrity(TSSI) of multi-slot calls in the single-buffered switching networks and analyze their traffic characteristics in terms of traffic mixture ratio, number of random searches for idle time slots, and their blocking probablities. This result can be utilized in the design of wideband switching networks in the single buffered systems, such as TDX IA/B swithcing systems, for accommodating multi slot calls.

  • PDF

The complete chloroplast genome of Campsis grandiflora (Bignoniaceae)

  • PARK, Jongsun;XI, Hong
    • Korean Journal of Plant Taxonomy
    • /
    • v.52 no.3
    • /
    • pp.156-172
    • /
    • 2022
  • Campsis grandiflora (Thunb.) K. Schum is an ornamental species with various useful biological effects. The chloroplast genome of C. grandiflora isolated in Korea is 154,293 bp long (GC ratio: 38.1%) and has four subregions: 84,121 bp of large single-copy (36.2%) and 18,521 bp of small single-copy (30.0%) regions are separated by 24,332 bp of inverted repeat (42.9%) regions including 132 genes (87 protein-coding genes, eight rRNAs, and 37 tRNAs). One single-nucleotide polymorphism and five insertion and deletion (INDEL) regions (40-bp in total) were identified, indicating a low level of intraspecific variation in the chloroplast genome. All five INDEL regions were linked to the repetitive sequences. Seventy-two normal simple sequence repeats (SSRs) and 47 extended SSRs were identified to develop molecular markers. The phylogenetic trees of 29 representative Bignoniaceae chloroplast genomes indicate that the tribe-level phylogenic relationship is congruent with the findings of previous studies.

Heterogeneity of Chloroplast DNA in Rice (벼 엽록체 DNA의 이질성)

  • 남백희;문은표
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.391-401
    • /
    • 1987
  • Plant chloroplast DNA exists as an unique circular structure in which large single copy(LSC) region and small single copy (SSC) region are separated by large inverted repeat sequences (IRS). It has been known that the unique existence of inverted repeat sequences in chloroplast DNA has no relation with the stability of the chloroplast DNA, but causes the inversion between inverted repeat its biological significance has not been understood so far. In rice, several gene clusters have been cloned and sequenced which contain ribulose-5-biophosphate car-boxylase large subunit (rbcL). Especially, one rbcL gene is linked with rp12 gene which is located in the IRS region in one of the gene clusters. By comparison of nucleotide sequence, the two genes are found to be linked through 151 bp repeat sequence which is homologous to the rp123 gene in IRS region. The repeat sequence is found to be located 3' downstream of rfcL gene and near psbA gene in LSC region. The existence of these repeat sequences and the presence of gene clusters caused by the gene rearrangement thorough the repeat sequence provide a possible which is found to be dispersed chloroplast DNA provide the model system to explaine the heterogeneity of the chloroplast DNA in rice in term of gene rearrangement.

  • PDF

Multi-slice Multi-echo Pulsed-gradient Spin-echo (MePGSE) Sequence for Diffusion Tensor Imaging MRI: A Preliminary Result (일회 영상으로 확산텐서 자기공명영상을 얻을 수 있는 다편-다에코 펄스 경사자장 스핀에코(MePGSE) 시퀀스의 초기 결과)

  • Jahng, Geon-Ho;Pickup, Stephen
    • Progress in Medical Physics
    • /
    • v.18 no.2
    • /
    • pp.65-72
    • /
    • 2007
  • An echo planar imaging (EPI)-based spin-echo sequence Is often used to obtain diffusion tensor imaging (DTI) data on most of the clinical MRI systems, However, this sequence is confounded with the susceptibility artifacts, especially on the temporal lobe in the human brain. Therefore, the objective of this study was to design a pulse sequence that relatively immunizes the susceptibility artifacts, but can map diffusion tensor components in a single-shot mode. A multi-slice multi-echo pulsed-gradient spin-echo (MePGSE) sequence with eight echoes wasdeveloped with selective refocusing pulses for all slices to map the full tensor. The first seven echoes in the train were diffusion-weighted allowing for the observation of diffusion in several different directions in a single experiment and the last echo was for crusher of the residual magnetization. All components of diffusion tensor were measured by a single shot experiment. The sequence was applied in diffusive phantoms. The preliminary experimental verification of the sequence was illustrated by measuring the apparent diffusion coefficient (ADC) for tap water and by measuring diffusion tensor components for watermelon. The ADC values in the series of the water phantom were reliable. The MePGSE sequence, therefore, may be useful in human brain studies.

  • PDF

Research on Discontinuous Pulse Width Modulation Algorithm for Single-phase Voltage Source Rectifier

  • Yang, Xi-Jun;Qu, Hao;Tang, Hou-Jun;Yao, Chen;Zhang, Ning-Yun;Blaabjerg, Frede
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.433-445
    • /
    • 2014
  • Single phase voltage source converter (VSC) is an important power electronic converter (PEC), including single-phase voltage source inverter (VSI), single-phase voltage source rectifier (VSR), single-phase active power filter (APF) and single-phase grid-connection inverter (GCI). As the fundamental part of large scale PECs, single-phase VSC has a wide range of applications. In the paper, as first, on the basis of the concept of the discontinuous pulse-width modulation (DPWM) for three-phase VSC, a new DPWM of single-phase VSR is presented by means of zero-sequence component injection. Then, the transformation from stationary frame (abc) to rotating frame (dq) is designed after reconstructing the other orthogonal current by means of one order all-pass filter. Finally, the presented DPWM based single-phase VSR is established analyzed and simulated by means of MATLAB/SIMULINK. In addition, the DPWMs presented by D. Grahame Holmes and Thomas Lipo are discussed and simulated in brief. Obviously, the presented DPWM can also be used for single-phase VSI, GCI and APF. The simulation results show the validation of the above modulation algorithm, and the DPWM based single-phase VSR has reduced power loss and increased efficiency.

Binary Sequence Generator with a Large Number of Output Sequences (다수열 출력 이진 수열 발생기)

  • 이훈재;문상재
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.7 no.3
    • /
    • pp.11-22
    • /
    • 1997
  • The number of output sequence was proposed as a characteristic of binary sequence generators for cryptographic application, but in general most of binary sequence generators have single number of output sequence. In this paper, we propose two types of binary sequence generators with a large number of output sequences. The first one is a Switched-Tap LFSR (STLFSR) and it applies to the generalized nonlinear function and the Geffe's generator as example. The other is a generalized memory sequence generator(GMEM-BSG) which is an improved version of the Golic's memory sequence generator (MEM-BSG) with a large number of output sequences, and its period, linear complexity, and the number of output sequence are derived.

Single-Base Genome Editing in Corynebacterium glutamicum with the Help of Negative Selection by Target-Mismatched CRISPR/Cpf1

  • Kim, Hyun Ju;Oh, Se Young;Lee, Sang Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1583-1591
    • /
    • 2020
  • CRISPR/Cpf1 has emerged as a new CRISPR-based genome editing tool because, in comparison with CRIPSR/Cas9, it has a different T-rich PAM sequence to expand the target DNA sequence. Single-base editing in the microbial genome can be facilitated by oligonucleotide-directed mutagenesis (ODM) followed by negative selection with the CRISPR/Cpf1 system. However, single point mutations aided by Cpf1 negative selection have been rarely reported in Corynebacterium glutamicum. This study aimed to introduce an amber stop codon in crtEb encoding lycopene hydratase, through ODM and Cpf1-mediated negative selection; deficiency of this enzyme causes pink coloration due to lycopene accumulation in C. glutamicum. Consequently, on using double-, triple-, and quadruple-base-mutagenic oligonucleotides, 91.5-95.3% pink cells were obtained among the total live C. glutamicum cells. However, among the negatively selected live cells, 0.6% pink cells were obtained using single-base-mutagenic oligonucleotides, indicating that very few single-base mutations were introduced, possibly owing to mismatch tolerance. This led to the consideration of various target-mismatched crRNAs to prevent the death of single-base-edited cells. Consequently, we obtained 99.7% pink colonies after CRISPR/Cpf1-mediated negative selection using an appropriate single-mismatched crRNA. Furthermore, Sanger sequencing revealed that single-base mutations were successfully edited in the 99.7% of pink cells, while only two of nine among 0.6% of pink cells were correctly edited. The results indicate that the target-mismatched Cpf1 negative selection can assist in efficient and accurate single-base genome editing methods in C. glutamicum.

Behavior of an Automatic Pacemaker Sensing Algorithm for Single-Pass VDD Atrial Electrograms (Single-Pass VDD 심파를 위한 자동화된 심장 박동기 탈분극파 검출 알고리즘의 효용성)

  • Kim, Jung-Kuk;Lee, Seung-Han;Huh, Woong
    • Journal of IKEEE
    • /
    • v.5 no.2 s.9
    • /
    • pp.182-189
    • /
    • 2001
  • Single-pass VDD pacemakers have been used as a result of simple implantation procedures and generally reliable atrial tracking that ensures an A-V sequence pacing. However, there is a controversy over their reliabilities of atrial tracking. As a new sensing method for reliable atrial tracking, a simple automatic pacemaker sensing algorithm was implemented and evaluated to validate its benefits in sensing depolarization waves of Single-pass VDD atrial electrograms. The automatic sensing algorithm had a predetermined sensing dynamic range and the sensitivity level was controlled as 50% of the average of two most recently sensed intrinsic amplitudes. The behavior of the automatic sensing algorithm in the Single-pass VDD atrial electrograms was analyzed and characterized. It was observed that the automatic sensing algorithm was more effective than a conventional fixed threshold method to accurately detect and track p-waves in Single-pass VDD electrograms.

  • PDF