• 제목/요약/키워드: Single reactor

검색결과 398건 처리시간 0.024초

Hydrogen Reduction of NiO Particles in a Single-Stage Fluidized-Bed Reactor without Sticking

  • Oh, Chang-Sup;Kim, Hang Goo;Kim, Yong Ha
    • 한국재료학회지
    • /
    • 제26권2호
    • /
    • pp.79-83
    • /
    • 2016
  • A commercial NiO (green nickel oxide, 86 wt% Ni) powder was reduced using a batch-type fluidized-bed reactor in a temperature range of 500 to $600^{\circ}C$ and in a residence time range of 5 to 90 min. The reduction rate increased with increases in temperature; however, agglomeration and sintering (sticking) of Ni particles noticeably took place at high temperatures above $600^{\circ}C$. An increasing tendency toward sticking was also observed at long residence times. In order to reduce the oxygen content in the powder to a level below 1% without any sticking problems, which can lead to defluidization, proper temperature and residence time for a stable fluidized-bed operation should be established. In this study, these values were found to be $550^{\circ}C$ and 60 min, respectively. Another important condition is the specific gas consumption rate, i.e. the volume amount ($Nm^3$) of hydrogen gas used to reduce 1 ton of Green NiO ore. The optimum gas consumption rate was found to be $5,000Nm^3/ton$-NiO for the complete reduction. The Avrami model was applied to this study; experimental data are most closely fitted with an exponent (m) of $0.6{\pm}0.01$ and with an overall rate constant (k) in the range of 0.35~0.45, depending on the temperature.

유량 변화에 따른 exo-tetrahydrodicyclopentadiene의 열분해특성에 관한 연구 (A Study on Thermal Decomposition Characteristics of exo-tetrahydrodicyclopentadiene with Variation of Flow Rate)

  • 강샛별
    • Korean Chemical Engineering Research
    • /
    • 제57권6호
    • /
    • pp.763-767
    • /
    • 2019
  • 본 연구에서는 흐름형 반응기를 활용하여 단일 화합물로 구성된 연료인 exo-tetrahydrodicyclopentadiene (exo-THDCP)의 유량을 변화시킴에 따라 나타나는 열분해 특성에 대해 분석하였다. 실험은 $500^{\circ}C$, 50 bar의 온도와 압력 조건에서 수행하였으며, 각 유량 조건에서 반응을 통해 생성된 물질은 GC/MS를 사용하여 분석하였다. 그 결과, exo-THDCP는 열에 의해 주로 고리형 화합물로 분해됨과 동시에 일부는 이성질화 되는 것을 확인하였다. 또한, 유량이 증가할수록 분해 및 이성질화 반응을 통해 생성되는 화합물의 종류와 비율이 감소하였으며, 이에 따라 연료의 전환율과 분해 반응 시에 발생하는 흡열량도 함께 감소하였다. 열분해 반응 시에 비교적 빠르게 생성되는 화합물은 주로 1-cyclopentylcyclopentene (1-CPCP)의 radical 형태를 중간체로 하여 형성되는 것으로 분석되었는데, 이는 exo-THDCP로부터 생성될 수 있는 중간체 중에서도 특히 1-CPCP가 생성되는 데에 필요한 활성화 에너지가 약 42 kcal/mol로 가장 낮기 때문인 것으로 해석된다.

Excluding molten fluoride salt from nuclear graphite by SiC/glassy carbon composite coating

  • He, Zhao;Song, Jinliang;Lian, Pengfei;Zhang, Dongqing;Liu, Zhanjun
    • Nuclear Engineering and Technology
    • /
    • 제51권5호
    • /
    • pp.1390-1397
    • /
    • 2019
  • SiC coating and SiC/glassy carbon composite coating were prepared on IG-110 nuclear graphite (Toyo Tanso Co., Ltd., Japan) to strengthen its inertness to molten fluoride salt used in molten salt reactor (MSR). Two kinds of modified graphite were obtained and correspondingly named as IG-110-1 and IG-110-2, which referred to modified IG-110 with a single SiC coating and a SiC/glassy carbon composite coating, respectively. Both structure and property of modified graphite were carefully researched and contrasted with virgin IG-110. Results indicated that modified graphite presented better comprehensive properties such as more compact structure and higher resistance to molten salt infiltration. With the protection of coatings, the infiltration amounts of fluoride salt into modified graphite were much less than that into virgin IG-110 at the same circumstance. Especially, the infiltration amount of fluoride salt into IG-110-2 under 5 atm was merely 0.26 wt%, which was much less than that into virgin IG-110 under 1.5 atm (13.5 wt%) and the critical index proposed for nuclear graphite used in MSR (0.5 wt%). The SiC/glassy carbon composite coating gave rise to highest resistance to molten salt infiltration into IG-110-2, and thus demonstrated it could be a promising protective coating for nuclear graphite used in MSR.

Development of a drift-flux model based core thermal-hydraulics code for efficient high-fidelity multiphysics calculation

  • Lee, Jaejin;Facchini, Alberto;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • 제51권6호
    • /
    • pp.1487-1503
    • /
    • 2019
  • The methods and performance of a pin-level nuclear reactor core thermal-hydraulics (T/H) code ESCOT employing the drift-flux model are presented. This code aims at providing an accurate yet fast core thermal-hydraulics solution capability to high-fidelity multiphysics core analysis systems targeting massively parallel computing platforms. The four equation drift-flux model is adopted for two-phase calculations, and numerical solutions are obtained by applying the Finite Volume Method (FVM) and the Semi-Implicit Method for Pressure-Linked Equation (SIMPLE)-like algorithm in a staggered grid system. Constitutive models involving turbulent mixing, pressure drop, and vapor generation are employed to simulate key phenomena in subchannel-scale analyses. ESCOT is parallelized by a domain decomposition scheme that involves both radial and axial decomposition to enable highly parallelized execution. The ESCOT solutions are validated through the applications to various experiments which include CNEN $4{\times}4$, Weiss et al. two assemblies, PNNL $2{\times}6$, RPI $2{\times}2$ air-water, and PSBT covering single/two-phase and unheated/heated conditions. The parameters of interest for validation include various flow characteristics such as turbulent mixing, spacer grid pressure drop, cross-flow, reverse flow, buoyancy effect, void drift, and bubble generation. For all the validation tests, ESCOT shows good agreements with measured data in the extent comparable to those of other subchannel-scale codes: COBRA-TF, MATRA and/or CUPID. The execution performance is examined with a mini-sized whole core consisting of 89 fuel assemblies and for an OPR1000 core. It turns out that it is about 1.5 times faster than a subchannel code based on the two-fluid three field model and the axial domain decomposition scheme works as well as the radial one yielding a steady-state solution for the OPR1000 core within 30 s with 104 processors.

젖소 착유세정폐수의 효율적인 정화처리를 위한 기초연구 (Preliminary Studies for Efficient Treatment of Wastewater Milking Parlor in Livestock Farm)

  • 장영호;이수문;김웅수;강진영
    • 한국물환경학회지
    • /
    • 제36권6호
    • /
    • pp.500-507
    • /
    • 2020
  • This study examined the wastewater at a livestock farm, and found that the dairy wastewater from the milking parlor had a lower concentration than the piggery wastewater, and that it was produced at a rate under 1.3 ㎥/day in a single farmhouse. The amount of dairy wastewater was determined based on the performance of the milking machine, the maintenance method of the milking parlor, and the amount of milk production allocated for each farmhouse, not by the area. The results confirmed that both dairy wastewater treatment processes, specifically those using Hanged Bio-Compactor (HBC) and Sequencing Batch Reactor (SBR), can fully satisfy the water quality standards of discharge. The dairy wastewater has a lower amount and concentration than piggery wastewater, meaning it is less valuable as liquid fertilizer, but it can be easily degraded using the conventional activated sludge process in a public sewage treatment plant. Therefore, discharging the dairy wastewater after individual treatment was expected to be a more reasonable method than consigning it to the centralized wastewater treatment plant. The effluent after the SBR process showed a lower degree of color than the HBC effluent, which was attributed to biological adsorption. In the case of the milking parlor in the livestock farm, the concentrations of the effluents obtained after HBC and SBR treatments both satisfied water quality standards for the discharge of public livestock wastewater treatment plants at 99% confidence intervals, and the concentrations of total nitrogen and phosphorous in untreated wastewater were even lower than the water quality standards of discharge. Therefore, we need to discuss strengthening the water quality standards to reduce environmental pollution.

Knowledge from recent investigations on sloshing motion in a liquid pool with solid particles for severe accident analyses of sodium-cooled fast reactor

  • Xu, Ruicong;Cheng, Songbai;Li, Shuo;Cheng, Hui
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.589-600
    • /
    • 2022
  • Investigations on the molten-pool sloshing behavior are of essential value for improving nuclear safety evaluation of Core Disruptive Accidents (CDA) that would be possibly encountered for Sodium-cooled Fast Reactors (SFR). This paper is aimed at synthesizing the knowledge from our recent studies on molten-pool sloshing behavior with solid particles conducted at the Sun Yat-sen University. To better visualize and clarify the mechanism and characteristics of sloshing induced by local Fuel-Coolant Interaction (FCI), experiments were performed with various parameters by injecting nitrogen gas into a 2-dimensional liquid pool with accumulated solid particles. It was confirmed that under different particle-bed conditions, three representative flow regimes (i.e. the bubble-impulsion dominant, transitional and bed-inertia dominant regimes) are identifiable. Aimed at predicting the regime transitions during sloshing process, a predictive empirical model along with a regime map was proposed on the basis of experiments using single-sized spherical solid particles, and then was extended for covering more complex particle conditions (e.g. non-spherical, mixed-sized and mixed-density spherical particle conditions). To obtain more comprehensive understandings and verify the applicability and reliability of the predictive model under more realistic conditions (e.g. large-scale 3-dimensional condition), further experimental and modeling studies are also being prepared under other more complicated actual conditions.

Comparison of periodontitis-associated oral biofilm formation under dynamic and static conditions

  • Song, Won sub;Lee, Jae-Kwan;Park, Se Hwan;Um, Heung-Sik;Lee, Si Young;Chang, Beom-Seok
    • Journal of Periodontal and Implant Science
    • /
    • 제47권4호
    • /
    • pp.219-230
    • /
    • 2017
  • Purpose: The purpose of this study was to compare the characteristics of single- and dualspecies in vitro oral biofilms made by static and dynamic methods. Methods: Hydroxyapatite (HA) disks, 12.7 mm in diameter and 3 mm thick, were coated with processed saliva for 4 hours. The disks were divided into a static method group and a dynamic method group. The disks treated with a static method were cultured in 12-well plates, and the disks in the dynamic method group were cultured in a Center for Disease Control and Prevention (CDC) biofilm reactor for 72 hours. In the single- and dual-species biofilms, Fusobacterium nucleatum and Porphyromonas gingivalis were used, and the amount of adhering bacteria, proportions of species, and bacterial reduction of chlorhexidine were examined. Bacterial adhesion was examined with scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Results: Compared with the biofilms made using the static method, the biofilms made using the dynamic method had significantly lower amounts of adhering and looser bacterial accumulation in SEM and CLSM images. The proportion of P. gingivalis was higher in the dynamic method group than in the static method group; however, the difference was not statistically significant. Furthermore, the biofilm thickness and bacterial reduction by chlorhexidine showed no significant differences between the 2 methods. Conclusions: When used to reproduce periodontal biofilms composed of F. nucleatum and P. gingivalis, the dynamic method (CDC biofilm reactor) formed looser biofilms containing fewer bacteria than the well plate. However, this difference did not influence the thickness of the biofilms or the activity of chlorhexidine. Therefore, both methods are useful for mimicking periodontitis-associated oral biofilms.

폐감귤박으로 제조한 활성탄을 충전한 고정층 반응기에서 아세톤, 벤젠 및 메틸메르캅탄의 흡착특성 (Adsorption Characteristics of Acetone, Benzene, and Metylmercaptan in the Fixed Bed Reactor Packed with Activated Carbon Prepared from Waste Citrus Peel)

  • 감상규;강경호;이민규
    • 공업화학
    • /
    • 제29권1호
    • /
    • pp.28-36
    • /
    • 2018
  • 폐감귤박으로 제조한 활성탄(WCAC)을 충전한 고정층 반응기에서 아세톤, 벤젠 및 메틸메르캅탄(MM)의 3종류의 대상가스에 대한 흡착특성을 검토하였다. 단일성분계의 경우에 파과곡선으로부터 구한 파과시간은 유입농도 및 유량이 증가할수록 감소하였으나 형상비(L/D)가 증가할수록 증가하였다. WCAC에 의한 대상가스의 흡착량은 유입농도 및 형상비가 증가할수록 증가하였으나 유량증가에 따른 흡착량은 대상가스에 따라 차이를 나타내었다. 파과시간 및 흡착량 결과에 의하면 WCAC에 대한 친화력은 벤젠이 가장 높고, 다음으로 아세톤 그리고 MM의 순서이었다. 한편, 2성분계 및 3성분계 혼합가스의 흡착 경우에 파과곡선은 WCAC와 친화력이 작은 흡착질은 친화력이 큰 흡착질로 치환되면서 roll-up 현상을 보였다. 그리고 WCAC에 의한 아세톤의 흡착은 황화합물인 MM보다 비극성인 벤젠과 혼합되어 있을 경우에 영향을 크게 받는 것으로 나타났다.

가압 경수로 사용후핵연료 중 삼중수소 분석 (Determination of Tritium in Spent Pressurized Water Reactor (PWR) Fuels)

  • 이창헌;서무열;최광순;지광용;김원호
    • 분석과학
    • /
    • 제17권5호
    • /
    • pp.381-387
    • /
    • 2004
  • 가압 경수로 사용후핵연료의 화학특성을 규명하기 위하여 극미량 함유되어 있는 삼중수소 ($^3H$)의 정량기술을 확립하였다. 분석과정에서 발생하는 방사성 폐액의 양을 줄이고 분석자의 방사선 피폭을 줄이기 위하여 하나의 시료로부터 $^{14}C$$^3H$를 순차적으로 회수할 수 있도록 분리조건을 최적화하였다. 사용후핵연료를 질산으로 용해하는 과정에서 $^{14}CO_2$와 함께 휘발하는 $^{129}I_2$$AgNO_3$가 침윤되어 있는 흡착제로 제거하였다. $^{14}CO_2$는 1.5 M NaOH에 포집시키고 $^3H_2O$는 증류시켜 회수하였다. $^3H$의 평균 회수율은 97.9%, 상대표준편차는 0.9% (n = 3) 이었으며, 37,000 MWd/MtU 연소도의 사용후핵연료를 대상으로 $^3H$를 분석하고 표준물첨가법으로 분석신뢰도를 평가하였다.

하나로의 즉발감마선 방사화분석 장치를 이용한 붕소의 정량에 대한 연구 (Study on Determination of Boron using the PGAA Facility at HANARO Research Reactor)

  • 정용삼;조현제;문종화;김선하;김영진
    • 분석과학
    • /
    • 제16권5호
    • /
    • pp.391-398
    • /
    • 2003
  • 하나로의 즉발감마선 방사화분석 장치를 이용하여 생물시료중의 붕소의 정량을 위한 기초연구를 수행하였다. 측정조건에 대한 특성조사를 위해 시료에 대한 중성자 조사 위치에서 중성자속 및 균질도를 측정하였다. 시료위치에서 열중성자 빔의 크기가 $2{\times}2cm^2$ 되도록 집속하였으며, 측정된 선속은 $1.0{\sim}6.5{\times}10^7n{\cdot}cm^{-2}{\cdot}s^{-1}$ 범위를 나타냈으며, 중심부로부터 반경 4.5 mm 이내 및 9 mm 이내에서 각각 $5.77{\pm}0.71{\times}10^7n{\cdot}cm^{-2}{\cdot}s^{-1}$, $4.68{\pm}1.64{\times}10^7n{\cdot}cm^{-2}{\cdot}s^{-1}$이었다. 따라서 양질의 균일한 조사를 위해서 시료의 크기를 10 mm 이내로 조정하였다. 검출 시스템은 컴프턴 산란에 의한 백그라운드 요인을 억제하고 분석감도를 높이기 위해 설계되었으며, 감마선 계측 시스템의 에너지 교정과 컴프턴 억제율을 조사하기 위해 NaCl 표준체를 이용하여 단일 및 컴프턴 모드로 백그라운드를 측정하였다. 또한 정확한 붕소의 측정을 위해 시료의 매질효과로서 발생하는 분광학적 Na의 472 keV 피이크에 대한 간섭효과를 결정하였으며, 세 가지 인증표준물질 (NIST SRM 1570a, 1547, 1573a)을 이용한 붕소농도 측정시험을 두 가지 모드로 실시한 후 결과를 비교하였다.