Acknowledgement
The authors would like to express their gratitude to the financial support from research projects in China, including the Guangdong Provincial Science and Technology Plan Project (No. 2021A0505030026) and the Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515010343).
References
- B. Raj, P. Chellapandi, P.V. Rao, Sodium Fast Reactors with Closed Fuel Cycle, CRC Press, Boca Raton, USA, 2015.
- S. Cheng, P. Gong, S. Wang, J. Cui, Y. Qian, T. Zhang, G. Jiang, Investigation of flow regime in debris bed formation behavior with nonspherical particles, Nucl. Eng. Technol. 50 (1) (2018) 43-53. https://doi.org/10.1016/j.net.2017.09.003
- A. Bachrata, F. Bertrand, N. Marie, F. Serre, A comparative study on severe accident phenomena related to melt progression in SFR and PWR, J. Nucl. Eng. Radiat. Sci. 7 (3) (2021), 030801. https://doi.org/10.1115/1.4047921
- R. Xu, S. Cheng, Review of the molten-pool sloshing motion in case of Core Disruptive Accident: experimental and modeling studies, Prog. Nucl. Energy 133 (2021) 103647. https://doi.org/10.1016/j.pnucene.2021.103647
- A. Tentner, E. Parma, T. Wei, R. Wigeland, Severe Accident Approach-Final Report. Evaluation of Design Measures for Severe Accident Prevention and Consequence Mitigation, Argonne National Laboratory, 2010. ANL-GENIV-128.
- S. Cheng, K. Matsuba, M. Isozaki, K. Kamiyama, T. Suzuki, Y. Tobita, A numerical study on local fuel-coolant interactions in a simulated molten fuel pool using the SIMMER-III code, Ann. Nucl. Energy 85 (2015) 740-752. https://doi.org/10.1016/j.anucene.2015.06.030
- H. Yamano, Y. Onoda, Y. Tobita, I. Sato, Transient heat transfer characteristics between molten fuel and steel with steel boiling in the CABRI-TPA2 test, Nucl. Technol. 165 (2) (2009) 145-165. https://doi.org/10.13182/nt09-a4082
- W. Maschek, C.-D. Munz, L. Meyer, Investigations of sloshing fluid motions in pools related to recriticalities in liquid-metal fast breeder reactor core meltdown accidents, Nucl. Technol. 98 (1) (1992) 27-43. https://doi.org/10.13182/NT92-A34648
- T. Suzuki, K. Kamiyama, H. Yamano, S. Kubo, Y. Tobita, R. Nakai, K. Koyama, A scenario of core disruptive accident for Japan sodium-cooled fast reactor to achieve in-vessel retention, J. Nucl. Sci. Technol. 51 (4) (2014) 493-513. https://doi.org/10.1080/00223131.2013.877405
- T. Suzuki, Y. Tobita, K. Kawada, H. Tagami, J. Sogabe, K. Matsuba, K. Ito, H. Ohshima, A preliminary evaluation of unprotected loss-of-flow accident for a prototype fast-breeder reactor, Nucl. Eng. Technol. 47 (3) (2015) 240-252. https://doi.org/10.1016/j.net.2015.03.001
- T. Theofanous, C. Bell, An assessment of Clinch River Breeder Reactor core disruptive accident energetics, Nucl. Sci. Eng. 93 (3) (1986) 215-228. https://doi.org/10.13182/NSE86-A17751
- T. Zhang, S. Cheng, T. Zhu, C. Meng, X.a. Li, A new experimental investigation on local fuel-coolant interaction in a molten pool, Ann. Nucl. Energy 120 (2018) 593-603. https://doi.org/10.1016/j.anucene.2018.06.031
- S. Cheng, T. Zhang, C. Meng, T. Zhu, Y. Chen, Y. Dong, X. Chen, Y. Ye, A comparative study on local fuel-coolant interactions in a liquid pool with different interaction modes, Ann. Nucl. Energy 132 (2019) 258-270. https://doi.org/10.1016/j.anucene.2019.04.048
- S. Cheng, K. Matsuba, M. Isozaki, K. Kamiyama, T. Suzuki, Y. Tobita, An experimental study on local fuel-coolant interactions by delivering water into a simulated molten fuel pool, Nucl. Eng. Des. 275 (2014) 133-141. https://doi.org/10.1016/j.nucengdes.2014.05.003
- H. Yamano, T. Suzuki, Y. Tobita, T. Matsumoto, K. Morita, Validation of the SIMMER-IV severe accident computer code on three-dimensional sloshing behavior, in: The 8th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-8), Beppu, Japan, 2012, pp. 9-12. Dec.
- K. Morita, T. Matsumoto, Y. Emura, T. Abe, I. Tatewaki, H. Endo, Investigation on sloshing response of liquid in a 2D pool against hydraulic disturbance, in: The Ninth Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-9), Buyeo, Korea, 2014, pp. 16-19. Nov.
- S. Cheng, S. Li, K. Li, N. Zhang, T. Zhang, A two-dimensional experimental investigation on the sloshing behavior in a water pool, Ann. Nucl. Energy 114 (2018) 66-73. https://doi.org/10.1016/j.anucene.2017.12.026
- S. Cheng, S. Li, K. Li, T. Zhang, An experimental study on pool sloshing behavior with solid particles, Nucl. Eng. Technol. 51 (1) (2019) 73-83. https://doi.org/10.1016/j.net.2018.09.016
- S. Cheng, S. Li, K. Li, T. Zhang, N. Zhang, X.a. Li, F. Liang, Prediction of flow-regime characteristics in pool sloshing behavior with solid particles, Ann. Nucl. Energy 121 (2018) 11-21. https://doi.org/10.1016/j.anucene.2018.07.017
- S. Cheng, X. Li, F. Liang, S. Li, K. Li, Study on sloshing motion in a liquid pool with non-spherical particles, Prog. Nucl. Energy 117 (2019) 103086. https://doi.org/10.1016/j.pnucene.2019.103086
- S. Cheng, W. Jin, Y. Qin, X. Zeng, J. Wen, Investigation of flow-regime characteristics in a sloshing pool with mixed-sized solid particles, Nucl. Eng. Technol. 52 (5) (2019) 925-936. https://doi.org/10.1016/j.net.2019.11.006
- S. Cheng, R. Xu, W. Jin, Y. Qin, X. Zeng, S. Li, K. Li, Experimental study on sloshing characteristics in a pool with stratified liquids, Ann. Nucl. Energy 138 (2020) 107184. https://doi.org/10.1016/j.anucene.2019.107184
- H. Yamano, S. Fujita, Y. Tobita, K. Kamiyama, M.K. Kondo Sa, E. Fischer, D. Brear, N. Shirakawa, X. Cao, M. Sugaya, Simmer-III: A Computer Program for LMFR Core Disruptive Accident Analysis Version 3 A Model Summary and Program Description, Japan Nuclear Cycle Devlopment Institute, 2003. JNC-TN-9400-2003-071.
- P. Liu, S. Yasunaka, T. Matsumoto, K. Morita, K. Fukuda, Y. Tobita, Simulation of the dynamic behavior of the solid particle bed in a liquid pool: sensitivity of the particle jamming and particle viscosity models, J. Nucl. Sci. Technol. 43 (2) (2006) 140-149. https://doi.org/10.3327/jnst.43.140
- P. Liu, S. Yasunaka, T. Matsumoto, K. Morita, K. Fukuda, H. Yamano, Y. Tobita, Dynamic behavior of a solid particle bed in a liquid pool: SIMMER-III code verification, Nucl. Eng. Des. 237 (5) (2007) 524-535. https://doi.org/10.1016/j.nucengdes.2006.08.004
- B. Zhang, T. Harada, D. Hirahara, T. Matsumoto, K. Morita, K. Fukuda, H. Yamano, T. Suzuki, Y. Tobita, Experimental investigation on self-leveling behavior in debris beds, Nucl. Eng. Des. 241 (1) (2011) 366-377. https://doi.org/10.1016/j.nucengdes.2010.11.013
- S. Cheng, D. Hirahara, Y. Tanaka, Y. Gondai, B. Zhang, T. Matsumoto, K. Morita, K. Fukuda, H. Yamano, T. Suzuki, Experimental investigation of bubbling in particle beds with high solid holdup, Exp. Therm. Fluid Sci. 35 (2) (2011) 405-415. https://doi.org/10.1016/j.expthermflusci.2010.11.003
- L.S. Fan, C. Zhu, Principles of Gas-Solid Flows, Cambridge University Press, Cambridge, UK, 2005.
- D. Geldart, Gas Fluidization Technology, John Wiley & Sons, Chichester, 1986.
- D. Geldart, Estimation of basic particle properties for use in fluid-particle process calculations, Powder Technol. 60 (1) (1990) 1-13. https://doi.org/10.1016/0032-5910(90)80099-K
- L.H.S. Phan, P. Ngo, F. Matsuoka, R. Miura, T. Matsumoto, K. Morita, Experimental study on self-leveling behavior of binary-mixed particles in cylindrical bed using gas-injection method, in: 12th International Topical Meeting on Reactor Thermal-Hydraulics, Operation, and Safety (NUTHOS-12), Qingdao, China, 2018, pp. 14-18. Oct.
- L.H.S. Phan, P.M. Ngo, R. Miura, Y. Tasaki, T. Matsumoto, W. Liu, K. Morita, Self-leveling behavior of mixed solid particles in cylindrical bed using gas-injection method, J. Nucl. Sci. Technol. 56 (1) (2019) 111-122. https://doi.org/10.1080/00223131.2018.1531077
- S. Chiba, T. Chiba, A.W. Nienow, H. Kobayashi, The minimum fluidisation velocity, bed expansion and pressure-drop profile of binary particle mixtures, Powder Technol. 22 (2) (1979) 255-269. https://doi.org/10.1016/0032-5910(79)80031-5
- Z. Li, N. Kobayashi, A. Nishimura, M. Hasatani, A method to predict the minimum fluidization velocity of binary mixtures based on particle packing properties, Chem. Eng. Commun. 192 (7) (2005) 918-932. https://doi.org/10.1080/009864490510950
- C.E. Agu, C. Pfeifer, B.M.E. Moldestad, Prediction of void fraction and minimum fluidization velocity of a binary mixture of particles: bed material and fuel particles, Powder Technol. 349 (2019) 99-107. https://doi.org/10.1016/j.powtec.2019.03.027
- S. Cheng, H. Yamano, T. Suzuki, Y. Tobita, Y. Nakamura, B. Zhang, T. Matsumoto, K. Morita, Empirical correlations for predicting the self-leveling behavior of debris bed, Nucl. Sci. Tech. 24 (1) (2013), 010602.
- S. Cheng, H. Tagami, H. Yamano, T. Suzuki, Y. Tobita, B. Zhang, T. Matsumoto, K. Morita, Evaluation of debris bed self-leveling behavior: a simple empirical approach and its validations, Ann. Nucl. Energy 63 (2014) 188-198. https://doi.org/10.1016/j.anucene.2013.07.050
- S. Cheng, H. Tagami, H. Yamano, T. Suzuki, Y. Tobita, Y. Nakamura, S. Taketa, S. Nishi, B. Zhang, T. Matsumoto, K. Morita, Experimental study and empirical model development for self-leveling behavior of debris bed using gas-injection, Mech. Eng. J. 1 (4) (2014). TEP0022-TEP0022. https://doi.org/10.1299/mej.2014tep0022