DOI QR코드

DOI QR Code

Knowledge from recent investigations on sloshing motion in a liquid pool with solid particles for severe accident analyses of sodium-cooled fast reactor

  • Xu, Ruicong (Sino-French Institute of Nuclear Engineering & Technology, Sun Yat-sen University Tang-Jia Wan) ;
  • Cheng, Songbai (Sino-French Institute of Nuclear Engineering & Technology, Sun Yat-sen University Tang-Jia Wan) ;
  • Li, Shuo (Sino-French Institute of Nuclear Engineering & Technology, Sun Yat-sen University Tang-Jia Wan) ;
  • Cheng, Hui (Sino-French Institute of Nuclear Engineering & Technology, Sun Yat-sen University Tang-Jia Wan)
  • Received : 2021.03.22
  • Accepted : 2021.08.17
  • Published : 2022.02.25

Abstract

Investigations on the molten-pool sloshing behavior are of essential value for improving nuclear safety evaluation of Core Disruptive Accidents (CDA) that would be possibly encountered for Sodium-cooled Fast Reactors (SFR). This paper is aimed at synthesizing the knowledge from our recent studies on molten-pool sloshing behavior with solid particles conducted at the Sun Yat-sen University. To better visualize and clarify the mechanism and characteristics of sloshing induced by local Fuel-Coolant Interaction (FCI), experiments were performed with various parameters by injecting nitrogen gas into a 2-dimensional liquid pool with accumulated solid particles. It was confirmed that under different particle-bed conditions, three representative flow regimes (i.e. the bubble-impulsion dominant, transitional and bed-inertia dominant regimes) are identifiable. Aimed at predicting the regime transitions during sloshing process, a predictive empirical model along with a regime map was proposed on the basis of experiments using single-sized spherical solid particles, and then was extended for covering more complex particle conditions (e.g. non-spherical, mixed-sized and mixed-density spherical particle conditions). To obtain more comprehensive understandings and verify the applicability and reliability of the predictive model under more realistic conditions (e.g. large-scale 3-dimensional condition), further experimental and modeling studies are also being prepared under other more complicated actual conditions.

Keywords

Acknowledgement

The authors would like to express their gratitude to the financial support from research projects in China, including the Guangdong Provincial Science and Technology Plan Project (No. 2021A0505030026) and the Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515010343).

References

  1. B. Raj, P. Chellapandi, P.V. Rao, Sodium Fast Reactors with Closed Fuel Cycle, CRC Press, Boca Raton, USA, 2015.
  2. S. Cheng, P. Gong, S. Wang, J. Cui, Y. Qian, T. Zhang, G. Jiang, Investigation of flow regime in debris bed formation behavior with nonspherical particles, Nucl. Eng. Technol. 50 (1) (2018) 43-53. https://doi.org/10.1016/j.net.2017.09.003
  3. A. Bachrata, F. Bertrand, N. Marie, F. Serre, A comparative study on severe accident phenomena related to melt progression in SFR and PWR, J. Nucl. Eng. Radiat. Sci. 7 (3) (2021), 030801. https://doi.org/10.1115/1.4047921
  4. R. Xu, S. Cheng, Review of the molten-pool sloshing motion in case of Core Disruptive Accident: experimental and modeling studies, Prog. Nucl. Energy 133 (2021) 103647. https://doi.org/10.1016/j.pnucene.2021.103647
  5. A. Tentner, E. Parma, T. Wei, R. Wigeland, Severe Accident Approach-Final Report. Evaluation of Design Measures for Severe Accident Prevention and Consequence Mitigation, Argonne National Laboratory, 2010. ANL-GENIV-128.
  6. S. Cheng, K. Matsuba, M. Isozaki, K. Kamiyama, T. Suzuki, Y. Tobita, A numerical study on local fuel-coolant interactions in a simulated molten fuel pool using the SIMMER-III code, Ann. Nucl. Energy 85 (2015) 740-752. https://doi.org/10.1016/j.anucene.2015.06.030
  7. H. Yamano, Y. Onoda, Y. Tobita, I. Sato, Transient heat transfer characteristics between molten fuel and steel with steel boiling in the CABRI-TPA2 test, Nucl. Technol. 165 (2) (2009) 145-165. https://doi.org/10.13182/nt09-a4082
  8. W. Maschek, C.-D. Munz, L. Meyer, Investigations of sloshing fluid motions in pools related to recriticalities in liquid-metal fast breeder reactor core meltdown accidents, Nucl. Technol. 98 (1) (1992) 27-43. https://doi.org/10.13182/NT92-A34648
  9. T. Suzuki, K. Kamiyama, H. Yamano, S. Kubo, Y. Tobita, R. Nakai, K. Koyama, A scenario of core disruptive accident for Japan sodium-cooled fast reactor to achieve in-vessel retention, J. Nucl. Sci. Technol. 51 (4) (2014) 493-513. https://doi.org/10.1080/00223131.2013.877405
  10. T. Suzuki, Y. Tobita, K. Kawada, H. Tagami, J. Sogabe, K. Matsuba, K. Ito, H. Ohshima, A preliminary evaluation of unprotected loss-of-flow accident for a prototype fast-breeder reactor, Nucl. Eng. Technol. 47 (3) (2015) 240-252. https://doi.org/10.1016/j.net.2015.03.001
  11. T. Theofanous, C. Bell, An assessment of Clinch River Breeder Reactor core disruptive accident energetics, Nucl. Sci. Eng. 93 (3) (1986) 215-228. https://doi.org/10.13182/NSE86-A17751
  12. T. Zhang, S. Cheng, T. Zhu, C. Meng, X.a. Li, A new experimental investigation on local fuel-coolant interaction in a molten pool, Ann. Nucl. Energy 120 (2018) 593-603. https://doi.org/10.1016/j.anucene.2018.06.031
  13. S. Cheng, T. Zhang, C. Meng, T. Zhu, Y. Chen, Y. Dong, X. Chen, Y. Ye, A comparative study on local fuel-coolant interactions in a liquid pool with different interaction modes, Ann. Nucl. Energy 132 (2019) 258-270. https://doi.org/10.1016/j.anucene.2019.04.048
  14. S. Cheng, K. Matsuba, M. Isozaki, K. Kamiyama, T. Suzuki, Y. Tobita, An experimental study on local fuel-coolant interactions by delivering water into a simulated molten fuel pool, Nucl. Eng. Des. 275 (2014) 133-141. https://doi.org/10.1016/j.nucengdes.2014.05.003
  15. H. Yamano, T. Suzuki, Y. Tobita, T. Matsumoto, K. Morita, Validation of the SIMMER-IV severe accident computer code on three-dimensional sloshing behavior, in: The 8th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-8), Beppu, Japan, 2012, pp. 9-12. Dec.
  16. K. Morita, T. Matsumoto, Y. Emura, T. Abe, I. Tatewaki, H. Endo, Investigation on sloshing response of liquid in a 2D pool against hydraulic disturbance, in: The Ninth Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-9), Buyeo, Korea, 2014, pp. 16-19. Nov.
  17. S. Cheng, S. Li, K. Li, N. Zhang, T. Zhang, A two-dimensional experimental investigation on the sloshing behavior in a water pool, Ann. Nucl. Energy 114 (2018) 66-73. https://doi.org/10.1016/j.anucene.2017.12.026
  18. S. Cheng, S. Li, K. Li, T. Zhang, An experimental study on pool sloshing behavior with solid particles, Nucl. Eng. Technol. 51 (1) (2019) 73-83. https://doi.org/10.1016/j.net.2018.09.016
  19. S. Cheng, S. Li, K. Li, T. Zhang, N. Zhang, X.a. Li, F. Liang, Prediction of flow-regime characteristics in pool sloshing behavior with solid particles, Ann. Nucl. Energy 121 (2018) 11-21. https://doi.org/10.1016/j.anucene.2018.07.017
  20. S. Cheng, X. Li, F. Liang, S. Li, K. Li, Study on sloshing motion in a liquid pool with non-spherical particles, Prog. Nucl. Energy 117 (2019) 103086. https://doi.org/10.1016/j.pnucene.2019.103086
  21. S. Cheng, W. Jin, Y. Qin, X. Zeng, J. Wen, Investigation of flow-regime characteristics in a sloshing pool with mixed-sized solid particles, Nucl. Eng. Technol. 52 (5) (2019) 925-936. https://doi.org/10.1016/j.net.2019.11.006
  22. S. Cheng, R. Xu, W. Jin, Y. Qin, X. Zeng, S. Li, K. Li, Experimental study on sloshing characteristics in a pool with stratified liquids, Ann. Nucl. Energy 138 (2020) 107184. https://doi.org/10.1016/j.anucene.2019.107184
  23. H. Yamano, S. Fujita, Y. Tobita, K. Kamiyama, M.K. Kondo Sa, E. Fischer, D. Brear, N. Shirakawa, X. Cao, M. Sugaya, Simmer-III: A Computer Program for LMFR Core Disruptive Accident Analysis Version 3 A Model Summary and Program Description, Japan Nuclear Cycle Devlopment Institute, 2003. JNC-TN-9400-2003-071.
  24. P. Liu, S. Yasunaka, T. Matsumoto, K. Morita, K. Fukuda, Y. Tobita, Simulation of the dynamic behavior of the solid particle bed in a liquid pool: sensitivity of the particle jamming and particle viscosity models, J. Nucl. Sci. Technol. 43 (2) (2006) 140-149. https://doi.org/10.3327/jnst.43.140
  25. P. Liu, S. Yasunaka, T. Matsumoto, K. Morita, K. Fukuda, H. Yamano, Y. Tobita, Dynamic behavior of a solid particle bed in a liquid pool: SIMMER-III code verification, Nucl. Eng. Des. 237 (5) (2007) 524-535. https://doi.org/10.1016/j.nucengdes.2006.08.004
  26. B. Zhang, T. Harada, D. Hirahara, T. Matsumoto, K. Morita, K. Fukuda, H. Yamano, T. Suzuki, Y. Tobita, Experimental investigation on self-leveling behavior in debris beds, Nucl. Eng. Des. 241 (1) (2011) 366-377. https://doi.org/10.1016/j.nucengdes.2010.11.013
  27. S. Cheng, D. Hirahara, Y. Tanaka, Y. Gondai, B. Zhang, T. Matsumoto, K. Morita, K. Fukuda, H. Yamano, T. Suzuki, Experimental investigation of bubbling in particle beds with high solid holdup, Exp. Therm. Fluid Sci. 35 (2) (2011) 405-415. https://doi.org/10.1016/j.expthermflusci.2010.11.003
  28. L.S. Fan, C. Zhu, Principles of Gas-Solid Flows, Cambridge University Press, Cambridge, UK, 2005.
  29. D. Geldart, Gas Fluidization Technology, John Wiley & Sons, Chichester, 1986.
  30. D. Geldart, Estimation of basic particle properties for use in fluid-particle process calculations, Powder Technol. 60 (1) (1990) 1-13. https://doi.org/10.1016/0032-5910(90)80099-K
  31. L.H.S. Phan, P. Ngo, F. Matsuoka, R. Miura, T. Matsumoto, K. Morita, Experimental study on self-leveling behavior of binary-mixed particles in cylindrical bed using gas-injection method, in: 12th International Topical Meeting on Reactor Thermal-Hydraulics, Operation, and Safety (NUTHOS-12), Qingdao, China, 2018, pp. 14-18. Oct.
  32. L.H.S. Phan, P.M. Ngo, R. Miura, Y. Tasaki, T. Matsumoto, W. Liu, K. Morita, Self-leveling behavior of mixed solid particles in cylindrical bed using gas-injection method, J. Nucl. Sci. Technol. 56 (1) (2019) 111-122. https://doi.org/10.1080/00223131.2018.1531077
  33. S. Chiba, T. Chiba, A.W. Nienow, H. Kobayashi, The minimum fluidisation velocity, bed expansion and pressure-drop profile of binary particle mixtures, Powder Technol. 22 (2) (1979) 255-269. https://doi.org/10.1016/0032-5910(79)80031-5
  34. Z. Li, N. Kobayashi, A. Nishimura, M. Hasatani, A method to predict the minimum fluidization velocity of binary mixtures based on particle packing properties, Chem. Eng. Commun. 192 (7) (2005) 918-932. https://doi.org/10.1080/009864490510950
  35. C.E. Agu, C. Pfeifer, B.M.E. Moldestad, Prediction of void fraction and minimum fluidization velocity of a binary mixture of particles: bed material and fuel particles, Powder Technol. 349 (2019) 99-107. https://doi.org/10.1016/j.powtec.2019.03.027
  36. S. Cheng, H. Yamano, T. Suzuki, Y. Tobita, Y. Nakamura, B. Zhang, T. Matsumoto, K. Morita, Empirical correlations for predicting the self-leveling behavior of debris bed, Nucl. Sci. Tech. 24 (1) (2013), 010602.
  37. S. Cheng, H. Tagami, H. Yamano, T. Suzuki, Y. Tobita, B. Zhang, T. Matsumoto, K. Morita, Evaluation of debris bed self-leveling behavior: a simple empirical approach and its validations, Ann. Nucl. Energy 63 (2014) 188-198. https://doi.org/10.1016/j.anucene.2013.07.050
  38. S. Cheng, H. Tagami, H. Yamano, T. Suzuki, Y. Tobita, Y. Nakamura, S. Taketa, S. Nishi, B. Zhang, T. Matsumoto, K. Morita, Experimental study and empirical model development for self-leveling behavior of debris bed using gas-injection, Mech. Eng. J. 1 (4) (2014). TEP0022-TEP0022. https://doi.org/10.1299/mej.2014tep0022