• Title/Summary/Keyword: Single reactor

Search Result 398, Processing Time 0.032 seconds

NEUTRON THREE-AXIS SPECTROMETRY AT THE ADVENT OF 21ST CENTURY

  • Kulda Jiri
    • Nuclear Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.433-436
    • /
    • 2006
  • The implementation of multiplexing techniques combined with advances in neutron optics make the neutron three-axis spectrometers (TAS) an efficient tool to map inelastic response from single crystals over momentum transfer ranges comparable to the size of a single Brillouin zone. Thanks to recent progress in polarization techniques such experiments can be combined relatively easily with neutron polarization analysis, which does not only provide unambiguous separation of response corresponding to structural and magnetic degrees of freedom, but permits a quantitative analysis of the magnetic response anisotropy, often of crucial importance to test theoretical predictions. In the forthcoming decade we therefore expect a further development of the complementary use, rather than competition, of the reactor-based TAS's with time-of-flight (TOF) instruments for single crystal spectroscopy at the existing (ISIS) as well as at the newly built (SNS, J-PARK) pulsed sources.

Failure Mode Effective Analysis for selection of Single Point Vulnerability in New type Nuclear Power Plant (신규노형 원전의 발전정지유발기기 선정을 위한 고장모드영향분석)

  • Hyun, Jin Woo;Yeam, Dong Un
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • For decreasing an unexpected shutdown of Nuclear Power Plants, Korea Hydro & Nuclear Power co.(KHNP) has developed Single Point Vulnerability(SPV) of NPPs since 2008. SPV is the equipment that cause reactor shutdown & turbine trip or more than 50% power rundown due to its malfunction. New type Nuclear Power Plants need to develop the SPV list, so performed the SPV selection for about 1 year. To develop this, Failure Mode Effect Analysis(FMEA) methods are used. As results of FMEA analysis, about 700 equipment are selected as SPV. Thereafter those are going to be applied to new type Nuclear Power Plants to enhance equipment reliability.

The Characteristics of a Pump at Nearly Saturated State

  • Kim, S. N.;Kim, J. C.
    • Nuclear Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.40-46
    • /
    • 1998
  • A set of experiments using a 1/10 scale model pump which was manufactured to simulate performance of reactor coolant pump(RCP) of Y.G.N # 3 and 4, was executed in single phase(at atmospheric pressure and room temperature) and near-saturation(300 ~ 600kPa). The pump characteristics in single phase flow was similar to the characteristics of the RCP. The pump characteristic curves at nearly saturated state were correlated in terms of flow coefficient and head coefficient for subcooled temperature using the cavitation number defined as (equation omitted), which can be predicted the cavitation possibility. The pump behavior around the saturated temperature almost consists with single phase behavior until the cavitation occurs(When cavitation occurs. When the flow coefficient is about 0.12), the pump head rapidly degrades. In this situation, subcooled temperature is about 1.8~8$^{\circ}C$ and cavitation number of model pump is 1.0 ~ 1.7.

  • PDF

Biosorption Characteristics of Heavy Metal by Algae, Spirulina in the Batch Reactor (회분식 반응기에서 조류 Spirulina 균체내 중금속 흡착 특성)

  • 신택수;주소영;김재용
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.1
    • /
    • pp.112-122
    • /
    • 1998
  • In recent years the accumulation of heavy metals in microorganisms, the biosorption has received much attention because of various environmental application. We have been to research the biosorption characteristics using algae, Spirulina, for the removal of heavy metal ions in industrial and polluted waters. In the adsorption of single heavy metal ions, the adsorption equilibrium was reached within 10min., and optimum pH and reaction temperature were 4.5-5 and 30-35$\circ $C, respectively. Under the above conditions, the maximum amounts of Pb, Cu, and Cd adsorbed to the unit weight of Spirulina were 107.6mg/g, 78.0mg/g, and 65.6mg/g, and three values were 1.45, 1.56, and 1.26 times higher than those adsorbed to the unit weight of activated carbon under same conditions. The adsorption kinetics of Pb, Cu, and Cd were fitted very well to the Freundlich isotherm and BET isotherm. Biosorption experiments in single ion solutions and binary ions solutions showed higher removal efficiency in the single ion solutions than in binary ions solutions.

  • PDF

Use of homogenization theory to build a beam element with thermo-mechanical microscale properties

  • Schrefler, B.A.;Lefik, M.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.6
    • /
    • pp.613-630
    • /
    • 1996
  • The homogenization method is used to develop a beam element in space for thermo-mechanical analysis of unidirectional composites. Local stress and temperature field in the microscale are described using the function of homogenization. The global (macroscopic) behaviour of the structure is supposed to be that of a beam. Beam-type kinematical hypotheses (including independent shear rotations) are hence applied and superposed on the microdescription. A macroscopic stiffness matrix for such a beam element is then developed which contains the microscale properties of the single cell of periodicity. The presented model enables us to analyse without too much computational effort complicated composite structures such as e.g. toroidal coils of a fusion reactor. We need only a FE mesh sufficiently fine for a correct description of the local geometry of a single cell and a few of the newly developed elements for the description of the global behaviour. An unsmearing procedure gives the stress and temperature field in the different materials of a single cell.

Characteristics of the Integrated Steam Generators for a Liquid Metal Reactor

  • Sim Yoon Sub;Kim Eui Kwang
    • Nuclear Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.127-141
    • /
    • 2004
  • Various types of integrated steam generators, which integrate IHTS and a steam generator into a single unit of equipment for an LMR, were analyzed using an analytic solution with some simplification. The analysis showed that the undesirable reversed heat transfer, of which occurrence was previously observed only in an integrated single-region bundle type, can also occur in an integrated double-region bundle type. The mechanism of the reversed heat transfer occurrence in the double-region type is explained and it is shown the mechanism in the double-region type is completely different from that in the single-region type. Based on this finding, a method for preventing the aforementioned heat transfer is suggested. The performance of the four types of the integrated steam generators is assessed. For this assessment, a SG is actually designed for each type and the optimization in the geometric parameters and flow rate are optimized.

Utility Interactive Photovoltaic System for DC Reactor Reduction (직류리액터 경감을 위한 계통연계형 태양광 발전시스템)

  • Sung, Nark-Kyu;Lee, Sang-Chip;Lee, Seung-Hwan;Oh, Bong-Hwan;Lee, Hoon-Goo;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.1948-1950
    • /
    • 1997
  • In this paper, we compose of the single current source inverter for utility interactive photovoltaic system. According to insert parallel resonant circuit, the do reactor decreases the distortion of dc current and output current. Therefore, we decrease the do reactance and control modulation factor to operation at the maximum power point around of solar cell.

  • PDF

The first application of modified neutron source multiplication method in subcriticality monitoring based on Monte Carlo

  • Wang, Wencong;Liu, Caixue;Huang, Liyuan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.477-484
    • /
    • 2020
  • The control rod drive mechanism needs to be debugged after reactor fresh fuel loading. It is of great importance to monitor the subcriticality of this process accurately. A modified method was applied to the subcriticality monitoring process, in which only a single control rod cluster was fully withdrawn from the core. In order to correct the error in the results obtained by Neutron Source Multiplication Method, which is based on one point reactor model, Monte Carlo neutron transport code was employed to calculate the fission neutron distribution, the iterated fission probability and the neutron flux in the neutron detector. This article analyzed the effect of a coarse mesh and a fine mesh to tally fission neutron distributions, the iterated fission probability distributions and to calculate correction factors. The subcriticality before and after modification is compared with the subcriticality calculated by MCNP code. The modified results turn out to be closer to calculation. It's feasible to implement the modified NSM method in large local reactivity addition process using Monte Carlo code based on 3D model.

Hydrogen purification using membrane reactors

  • Barbieri, Giuseppe;Bernardo, Paola;Drioli, Enrico;Lee, Dong-Wook;Sea, Bong-Kuk;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.21-24
    • /
    • 2003
  • Methane steam reforming (MSR) was studied in a membrane reactor (MR) with a Pd-based and a porous alumina membranes. MRs showed methane conversion higher than that foresaw by the thermodynamic equilibrium for a traditional reactor (TR). Silica membranes prepared at KRICT were characterized with permeation tests on single gases ($N_2$, $H_2$ and $CH_4$). These silica membranes can be also used for high temperature applications such as $H_2$ separation $CO_2$ hydrogenation for methanol production is another reaction where $H_2O$ selective removal can be performed with these silica membranes.

  • PDF

Automatic Power Factor Correction Using a Harmonic-Suppressed TCR Equipped with a New Adaptive Current Controller

  • Obais, Abdulkareem Mokif;Pasupuleti, Jagadeesh
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.742-753
    • /
    • 2014
  • In this paper, a new continuously and linearly controlled capacitive static VAR compensator is proposed for the automatic power factor correction of inductive single phase loads in 220V 50Hz power system networks. The compensator is constructed of a harmonic-suppressed TCR equipped with a new adaptive current controller. The harmonic-suppressed TCR is a new configuration that includes a thyristor controlled reactor (TCR) shunted by a passive third harmonic filter. In addition, the parallel configuration is connected to an AC source via a series first harmonic filter. The harmonic-suppressed TCR is designed so that negligible harmonic current components are injected into the AC source. The compensator is equipped with a new adaptive closed loop current controller, which responds linearly to reactive current demands. The no load operating losses of this compensator are negligible when compared to its capacitive reactive current rating. The proposed system is validated on PSpice which is very close in terms of performance to real hardware.