• Title/Summary/Keyword: Single point tool

Search Result 98, Processing Time 0.027 seconds

Determination of Trace Uranium in Human Hair by Nuclear Track Detection Technique

  • Chung, Yong-Sam;Moon, Jong-Hwa;Zinaida En;Cho, Seung-Yeon;Kang, Sang-Hoon;Lee, Jae-Ki
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.225-230
    • /
    • 2001
  • The aim of this study is to describe a usefulness of nuclear analytical technique in assessing and comparing the concentration levels through the analysis of uranium using human hair sample in the field of environment. A fission track detection technique was applied to determine the uranium concentration in human hair. Hair samples were collected from two groups of people - a) workers not dealing with uranium directly, and b) workers possibly contaminated with uranium. The concentration of $^{235}$ U for the first group varied from <1 to 39 ng/g and the second group can be estimated up to the level of $\mu$g/g. Radiographs of heavy-duty work samples contained high dense “hot spots” along a single hair. After washing in acetone and distilled water, external contamination was not totally removed. Insoluble uranium compounds were not completely washed out. The (n, f)- radiography technique, having high sensitivity, and capable of getting information on uranium content at each point of a single hair, is an excellent tool for environmental monitoring.

  • PDF

Shear response estimate for squat reinforced concrete walls via a single panel model

  • Massone, Leonardo M.;Ulloa, Marco A.
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.647-665
    • /
    • 2014
  • Squat reinforced concrete walls require enough shear strength in order to promote flexural yielding, which creates the need for designers of an accurate method for strength prediction. In many cases, especially for existing buildings, strength estimates might be insufficient when more accurate analyses are needed, such as pushover analysis. In this case, estimates of load versus displacement are required for building modeling. A model is developed that predicts the shear load versus shear deformation of squat reinforced concrete walls by means of a panel formulation. In order to provide a simple, design-oriented tool, the formulation considers the wall as a single element, which presents an average strain and stress field for the entire wall. Simple material constitutive laws for concrete and steel are used. The developed models can be divided into two categories: (i) rotating-angle and (ii) fixed-angle models. In the first case, the principal stress/strain direction rotates for each drift increment. This situation is addressed by prescribing the average normal strain of the panel. The formation of a crack, which can be interpreted as a fixed principal strain direction is imposed on the second formulation via calibration of the principal stress/strain direction obtained from the rotating-angle model at a cracking stage. Two alternatives are selected for the cracking point: fcr and 0.5fcr (post-peak). In terms of shear capacity, the model results are compared with an experimental database indicating that the fixed-angle models yield good results. The overall response (load-displacement) is also reasonable well predicted for specimens with diagonal compression failure.

Rasch Analysis of the Korean Version of the Fullerton Advanced Balance Scale

  • Jeon, Yong-jin;Kim, Gyoung-mo
    • Physical Therapy Korea
    • /
    • v.24 no.4
    • /
    • pp.20-28
    • /
    • 2017
  • Background: Rasch analysis has the advantage of placing both the items and the person along a single ratio scale and calibrates person ability and item difficulty onto an interval scale by logits. Therefore, Rasch analysis has been recommended as a better method for evaluating functional outcome questionnaires than traditional analyses. Objects: The aim of current study was to investigate item fit, item difficulty, rating scale, and separation index of the Korean version of the Fullerton Advanced Balance (KFAB) scale using Rasch analysis. Methods: In total, 93 patients with stroke (male=58, female=35) participated in this study. To investigate the item fit, difficulty, rating scale, and separation index of the KFAB scale, Rasch analysis was completed by the Winsteps software program. Results: In this study, all items of the KFAB scale were included in the Rasch model. The most difficult item was 'standing with feet together and eyes closed', and the easiest item was 'two-footed jump'. The rating scale was a 4-point scale instead of the original 5-point scale. Person and item separation indices showed high values that can identify a person with a wide range of balance ability. Conclusion: The KFAB scale appears to be a reliable and valid tool to assess balance function in patients with stroke. Furthermore, the scale was found to discriminate among stroke patients of varying balance abilities.

Multiphase turbulence mechanisms identification from consistent analysis of direct numerical simulation data

  • Magolan, Ben;Baglietto, Emilio;Brown, Cameron;Bolotnov, Igor A.;Tryggvason, Gretar;Lu, Jiacai
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1318-1325
    • /
    • 2017
  • Direct Numerical Simulation (DNS) serves as an irreplaceable tool to probe the complexities of multiphase flow and identify turbulent mechanisms that elude conventional experimental measurement techniques. The insights unlocked via its careful analysis can be used to guide the formulation and development of turbulence models used in multiphase computational fluid dynamics simulations of nuclear reactor applications. Here, we perform statistical analyses of DNS bubbly flow data generated by Bolotnov ($Re_{\tau}=400$) and LueTryggvason ($Re_{\tau}=150$), examining single-point statistics of mean and turbulent liquid properties, turbulent kinetic energy budgets, and two-point correlations in space and time. Deformability of the bubble interface is shown to have a dramatic impact on the liquid turbulent stresses and energy budgets. A reduction in temporal and spatial correlations for the streamwise turbulent stress (uu) is also observed at wall-normal distances of $y^+=15$, $y/{\delta}=0.5$, and $y/{\delta}=1.0$. These observations motivate the need for adaptation of length and time scales for bubble-induced turbulence models and serve as guidelines for future analyses of DNS bubbly flow data.

Elongation of Contact Length on the Line of Action in Roll Forming of Gears

  • Seizo Uematsu;Lyu, Sung-Ki
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.321-328
    • /
    • 2003
  • The elongation of contact length on the line of action is considered with particular reference for roll forming of gears, and for dynamic behavior of the tooth in meshing. However there is no paper that discuss the elongation of contact length in the load meshing of gears. Based on our investigation, the contact length on the line of action elongates more than the kinematically calculated value. In rolling, as the tool approaches the workpiece, the center distance of the gears decreases by a small amount. But, the elongation of contact length is sensitive. Therefore, the contact point on the line of action is difficult to be determined, which complicates the tooth analysis. In this study, the exact relation between the elongation of contact length and the tooth space over the recess or before the approach are revealed by experiments and kinematic theory. This analytical result applies not only for rolling, but also for the single flank meshing which is done under constant center distance.

Pencil Curve Tracing via Virtual Digitizing (가상 측정을 통한 펜슬곡선 추출)

  • 박정환;김보현;최병규
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.4
    • /
    • pp.253-266
    • /
    • 1997
  • Pencil-curve machining, which is a single-pass ball-end milling along a concave edge on adie surface, is widely employed in die-surface machining. The cutter-path used for pencil-curve machining, which is the trajectory of the “ball-center point” of a ball-endmill sliding along a concave-edge region on the die surface, is called pencil-curve. Presented in the paper is a pencil-curve tracing algorithm in which “concave-type” sharp edges are computed from a “virtually digitized” model of the tool-envelope surface. The resulting “initial” pencil-cures are then refuted by applying a series of fairing operations. illustrative examples and methods for enhancing accuracy are also presented. The proposed pencil-curve tracing algorithm has been successfully implemented in a commercial CAM system specialized in die-machining and in the CAD/CAM system CATIA.

  • PDF

Computer Analysis Program of Small-Signal Stability of Power System for Tuning PSS′s parameters (PSS 정수 튜닝을 위한 전력시스템 미소신호 안정도 해석 프로그램)

  • Kim, Dong-Joon;Moon, Young-Hwan;Hur, Jin;Shin, Jeong-Hoon;Kim, Tae-Kyun;Choo, Jin-Boo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.5
    • /
    • pp.241-249
    • /
    • 2003
  • This paper describes a novel approach for performing eigenvalue analysis and frequency domain analysis of multi-machine power system. The salient feature of this approach is a direct approach for constructing the state matrix equations of linearized power systems about its operating point using modular technique. These state matrix equations are then used to obtain eigenvalues and mode shapes of the system, and frequency response, or Bode, plots of selected transfer functions. The proposed program provides a flexible tool for systematic analyses of tuning PSS's parameters. The paper also presents its application to the analyses of a single-machine infinite bus system and two-area system with 4 machines.

A Study of Aluminum Reflector Manufacturing in Diamond Turning Machine (다이아몬드 터닝머신을 이용한 알루미늄반사경의 절삭특성)

  • 김건희;고준빈;김홍배;원종호
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.1-5
    • /
    • 2002
  • A 110 m diameter aspheric metal secondary mirror for a test model of an earth observation satellite camera was fsbricated by ultra-precision single point diamond turning (SPDT). Aluminum alloy for mirror substrates is known to be easily machinable, but not polishable due to its ductility. A harder material, Ni, is usually electrolessly coated on an A1 substrate to increase the surface hardness for optical polishing. Aspheric metal secondary mirror without a conventional polishing process, the surface roughness of Ra=10nm, and the form error of Ra=λ/12(λ=632.8nm) has been required. The purpose of this research is to find the optimum machining conditions for reflector cutting of electroless-Ni coated A1 alloy and apply the SPDT technique to the manufacturing of ultra precision optical components of metal aspheric reflector.

Large-Eddy Simulation of a Turbulent Obstacle Flow at a High Reynolds Number (높은 레이놀즈수에서의 난류 장애물유동의 Large-Eddy-Simulation)

  • 양경수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1866-1872
    • /
    • 1994
  • Turbulent flow in a channel with a square rib periodically mounted on one wall is studied by large-eddy simulation(LES). An efficient 3D Navier-Stokes solver has been written for this geometry using a fractional step method and a multi-grid technique. The Reynolds number considered is 82, 000 based on the mean velocity above the obstacle height. Near-wall turbulence is approximated by a wall-layer model based on the turbulence intensity at the grid point nearest a solid wall. The results show a good qualitative agreement with experiments currently available for a single rib, indicating that LES can be a useful tool in simulating complex turbulent flows.

Optimization of Finish Cutting Condition of Impeller with Five-Axis Machine by Response Surface Method (반응표면법을 이용한 5축 임펠러 정삭 가공의 최적화)

  • Lim, Pyo;Yang, Gyun-Eui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.9
    • /
    • pp.924-933
    • /
    • 2007
  • An impeller is a important part of turbo-machinery. It has a set of twisted surfaces because it consists of many blades. Five-axis machining is required to produce a impeller because of interference between tool and workpiece. It can obtain good surface integrity and high productivity. This paper proposes finish cutting method for machining impeller with 5-axis machining center and optimization of cutting condition by response surface method. Firstly, cutting methods are selected by consideration of operation characteristics. Secondly, response factors are determined as cutting time and cutting error for prediction of productivity. Experiments are projected by central composite design with axis point. Thirdly, regression linear models are estimated as single surface in the leading edge and as dual surface in the hub surface cutting. Finally, cutting conditions are optimized.