• Title/Summary/Keyword: Single photon

Search Result 373, Processing Time 0.025 seconds

Plug & Play quantum cryptography system (Plug & Play 양자암호 시스템)

  • Lee, Kyung-Woon;Park, Chul-Woo;Park, Jun-Bum;Lee, Seung-Hun;Shin, Hyun-Jun;Park, Jung-Ho;Moon, Sung-Wook
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.3
    • /
    • pp.45-50
    • /
    • 2007
  • We present a auto compensating quantum key distribution system based on optical fiber at 1550nm. In the quantum key transmission system, main control board and phase modulation driving board are fabricated for auto controlling quantum key distribution(QKD). We tested the single photon counts per dark counts for a single photon detector, quantum key distribution rate($R_{sift}$) and the quantum bit error rate (QBER). Quantum bit error rate of 3.5% in 25km QKD is obtained. This system is commercially available.

Comparison of Image Uniformity with Photon Counting and Conventional Scintillation Single-Photon Emission Computed Tomography System: A Monte Carlo Simulation Study

  • Kim, Ho Chul;Kim, Hee-Joung;Kim, Kyuseok;Lee, Min-Hee;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.776-780
    • /
    • 2017
  • To avoid imaging artifacts and interpretation mistakes, an improvement of the uniformity in gamma camera systems is a very important point. We can expect excellent uniformity using cadmium zinc telluride (CZT) photon counting detector (PCD) because of the direct conversion of the gamma rays energy into electrons. In addition, the uniformity performance such as integral uniformity (IU), differential uniformity (DU), scatter fraction (SF), and contrast-to-noise ratio (CNR) varies according to the energy window setting. In this study, we compared a PCD and conventional scintillation detector with respect to the energy windows (5%, 10%, 15%, and 20%) using a $^{99m}Tc$ gamma source with a Geant4 Application for Tomography Emission simulation tool. The gamma camera systems used in this work are a CZT PCD and NaI(Tl) conventional scintillation detector with a 1-mm thickness. According to the results, although the IU and DU results were improved with the energy window, the SF and CNR results deteriorated with the energy window. In particular, the uniformity for the PCD was higher than that of the conventional scintillation detector in all cases. In conclusion, our results demonstrated that the uniformity of the CZT PCD was higher than that of the conventional scintillation detector.

A Design of Single Pixel Photon Counter for Digital X-ray Image Sensor (X-ray 이미지 센서용 싱글 픽셀 포톤 카운터 설계)

  • Baek, Seung-Myun;Kim, Tae-Ho;Kang, Hyung-Geun;Jeon, Sung-Chae;Jin, Seung-Oh;Huh, Young;Ha, Pan-Bong;Park, Mu-Hun;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.322-329
    • /
    • 2007
  • A single pixel photon counting type image sensor which is applicable for medical diagnosis with digitally obtained image and industrial purpose has been designed with $0.18{\mu}m$ triple-well CMOS process. The designed single pixel for readout chip is able to be operated by single supply voltage to simplify digital X-ray image sensor module and a preamplifier which is consist of folded cascode CMOS operational amplifier has been designed to enlarge signal voltage(${\Delta}Vs$), the output voltage of preamplifier. And an externally tunable threshold voltage generator circuit which generates threshold voltage in the readout chip has been newly proposed against the conventional external threshold voltage supply. In addition, A dark current compensation circuit for reducing dark current noise from photo diode is proposed and 15bit LFSR(Linear Feedback Shift Resister) Counter which is able to have high counting frequency and small layout area is designed.

Living Cell Functions and Morphology Revealed by Two-Photon Microscopy in Intact Neural and Secretory Organs

  • Nemoto, Tomomi
    • Molecules and Cells
    • /
    • v.26 no.2
    • /
    • pp.113-120
    • /
    • 2008
  • Laser light microscopy enables observation of various simultaneously occurring events in living cells. This capability is important for monitoring the spatiotemporal patterns of the molecular interactions underlying such events. Two-photon excited fluorescence microscopy (two-photon microscopy), a technology based on multiphoton excitation, is one of the most promising candidates for such imaging. The advantages of two-photon microscopy have spurred wider adoption of the method, especially in neurological studies. Multicolor excitation capability, one advantage of two-photon microscopy, has enabled the quantification of spatiotemporal patterns of $[Ca^{2+}]_i$ and single episodes of fusion pore openings during exocytosis. In pancreatic acinar cells, we have successfully demonstrated the existence of "sequential compound exocytosis" for the first time, a process which has subsequently been identified in a wide variety of secretory cells including exocrine, endocrine and blood cells. Our newly developed method, the two-photon extracellular polar-tracer imaging-based quantification (TEPIQ) method, can be used for determining fusion pores and the diameters of vesicles smaller than the diffraction-limited resolution. Furthermore, two-photon microscopy has the demonstrated capability of obtaining cross-sectional images from deep layers within nearly intact tissue samples over long observation times with excellent spatial resolution. Recently, we have successfully observed a neuron located deeper than 0.9 mm from the brain cortex surface in an anesthetized mouse. This microscopy also enables the monitoring of long-term changes in neural or glial cells in a living mouse. This minireview describes both the current and anticipated capabilities of two-photon microscopy, based on a discussion of previous publications and recently obtained data.

Hanbury brown-Twiss effect in a two-photon interference experiment (광자쌍을 이용한 Hanbury Brown-Twiss 실험)

  • Kim, Heon-Oh;Ko, Jeong-Hoon;Park, Goo-Dong;Kim, Tae-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.2
    • /
    • pp.130-134
    • /
    • 2003
  • We present experimental observations of two-photon spatial bunching effect in a two-photon interference experiment by using the photon pairs produced by parametric down-conversion and the Hong-Ou-Mandel interferometer. We show that this pairing behavior is observed by coincidence detection, but gives a negligible effect for a single count.

Cancer Treatment Using Multiphoton Photodynamic Therapy

  • Zakir Hossain, S.M.;Golam Azam, S.M.;Enayetul Babar, S.M.
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • Photodynamic therapy (PDT), a newly established treatment for solid tumors, involves the systemic administration of a tumor localizing photosensitizer that is only activated when exposed to light of appropriate wavelength. Photoactivation of photosensitizer in the presence of oxygen results in the formation of highly cytotoxic molecular species, which precipitates necrosis. PDT has now become a promising means for the treatment of cancer due to its specificity, relatively minimal side effects, and inexpensive. However, the application of PDT has been restricted to the treatment of superficial lesions or the use of interstitial light delivery. A single photon generally activates the photochemical reaction in traditional PDT. However the use of multi photon excitation, where two or more photons simultaneously excite a photosensitizer, allows for the use of wavelengths twice as long. Such wavelengths exhibit better transmittance through tissue and thereby deeper penetration is achieved. This paper will review theoretical principles of multi photon excitation, challenges associated with multi photon PDT and update the current and future role of multi photon PDT in cancer.

Improved measurement uncertainty of photon detection efficiency for single pixel Silicon photomultiplier

  • Yang, Seul Ki;Lee, Hye-Young;Jeon, Jina;Kim, Sug-Whan;Lee, Jik;Park, Il H.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.210.1-210.1
    • /
    • 2012
  • We report technique used for improved measurement uncertainties for Photon detection efficiency(PDE) of $1mm^2$ single pixel SiPM. It consists of 470nm LED light source, two 2-inch integrating sphere and two NIST calibrated silicon photodiodes that have ${\pm}2.4%$ calibration error. With raytracing simulation of our experimental setup, we predict number of photon into SiPM and measurement uncertainty. For MPPC, Hamamatsu suggested PDE(1600 micro pixel) including crosstalk and afterpulse is 23.5% at 470 nm. By using new low calibration error photodiode and raytracing simulation, our simulation result has ${\pm}3%$ measurement uncertainty. The technical detail of measurement, simulation are presented with the results and implication.

  • PDF