• Title/Summary/Keyword: Single mode fiber

Search Result 442, Processing Time 0.028 seconds

A Study on the Birefringence Properties of Single Mode Optical Fiber (단일모우드 광섬유의 Birefringence특성에 관한 연구)

  • 김은수;박한규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.7 no.4
    • /
    • pp.161-166
    • /
    • 1982
  • In this paper, the intrinsic birefringence and twist-induced rotation of the single mode optical fiber have been investigated. On the analysis, the optical fiber has been modeled as a linear retarder and the intrinsic linear retardation of the single mode optical fiber is approximately found to be 2.57'/m from the measurement. Theoretically analyzing the twist-induce rotation by the purturbation theory, it is found that the magnitude of the twist-induced rotation varies linearly with the twisted angle. And this theorerical result has been in good accord with the experimental result.

  • PDF

Cure real monitering sensor for UV curable thin epoxy film based on side-polished single mode fiber

  • Kim, Kwang-Taek;HwangBo, Sueng;Kang, Yong-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.254-258
    • /
    • 2007
  • A novel cure sensor based on the side-polished single mode fiber has been proposed and demonstrated. Two different UV curable epoxies were used to verify the feasibility of the side-polished single mode fiber as a high sensitivity cure sensor. The volume change of the epoxy by UV curing results in a corresponding change of the refractive index. The sensor can be used to monitor the curing process, the refractive index variation and the volume change of epoxy in real time during the UV curing process. In addition, small birefringence of the epoxy film can be detected using the sensor.

Quasi-Distributed Temperature Sensor Based on a V-Grooved Single-Mode Optical Fiber Covered with Ethylene Vinyl Acetate

  • Kim, Kwang Taek;Jeong, Seong-Gab
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.229-233
    • /
    • 2014
  • In this study, a V-grooved single-mode fiber along with optical time domain reflectometry (OTDR) as a quasi-distributed temperature sensor was investigated. The external medium used to fill the V-groove affects the optical mode. The V-groove was filled with ethylene vinyl acetate (EVA) because its transmittance was sensitive to temperature. The experimental results showed that the optical loss of the sensor varies with temperature, and the sensitivity depends on the depth of the V-groove.

A Study on the Characteristic of Weld Joint and Tensile Fracture of SUS304 and Cu High-Speed Dissimilar Lap Welds by Single Mode Fiber Laser (싱글모드 파이버 레이저를 이용한 SUS304와 Cu의 고속 겹치기 용접에서 접합부 및 인장시험 파단부의 특성에 관한 연구)

  • Lee, Su-Jin;Kim, Jong-Do;Katayama, Seiji
    • Journal of Welding and Joining
    • /
    • v.32 no.6
    • /
    • pp.56-63
    • /
    • 2014
  • To develop and understand dissimilar metals joining of Stainless steel and Copper, ultra-high speed laser lap welding was studied using single mode fiber laser in this study. SUS304 and Cu have large differences in materials properties, and Cu and Fe have no intermetallic compounds by typical binary phase of Cu and Fe system. In this study, ultra-high speed lap welds of SUS304 and Cu dissimilar metals using single-mode fiber laser was generated, and weldability of the weld fusion zone was evaluated using a tensile shear test. To understand the phenomenon of tensile shear load, weld fusion zone of interface weld area and fracture parts after tensile shear test were observed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) analysis system. And it was confirmed that Cu was easily melting and penetrating in the grain boundaries of SUS304 because of low melting temperature. And high thermal conductivity of copper occurred dissipate heat energy rapidly. These properties cause the solidification cracking in weld zone.

Multi-Core Fiber Based Fiber Bragg Gratings for Ground Based Instruments

  • Min, Seong-Sik;Lindley, Emma;Leon-Saval, Sergio;Lawrence, Jon;Bland-Hawthorn, Joss
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.53.2-53.2
    • /
    • 2015
  • Fiber Bragg gratings (FBGs) are the most compact and reliable method of suppressing atmospheric emission lines in the infrared for ground-based telescopes. It has been proved that real FBGs based filters were able to eliminate 63 bright sky lines with minimal interline losses in 2011 (GNOSIS). Inscribing FBGs on multi-core fibers offers advantages. Compared to arrays of individual SMFs, the multi-core fiber Bragg grating (MCFBG) is greatly reduced in size, resistant to damage, simple to fabricate, and easy to taper into a photonics lantern (PRAXIS). Multi-mode fibers should be used and the number of modes has to be large enough to capture a sufficient amount of light from the telescope. However, the fiber Bragg gratings can only be inscribed in the single-mode fiber. A photonic lantern bi-directionally converts multi-mode to single-mode. The number of cores in MCFBGs corresponds to the mode. For a writing system consisting of a single ultra-violet (UV) laser and phase mask, the standard writing method is insufficient to produce uniform MCFBGs due to the spatial variations of the field at each core within the fiber. Most significant technical challenges are consequences of the side-on illumination of the fiber. Firstly, the fiber cladding acts as a cylindrical lens, narrowing the incident beam as it passes through the air-cladding interface. Consequently, cores receive reduced or zero illumination, while the focusing induces variations in the power at those that are exposed. The second effect is the shadowing of the furthest cores by the cores nearest to the light source. Due to a higher refractive index of cores than the cladding, diffraction occurs at each core-cladding interface as well as cores absorb the light. As a result, any core that is located directly behind another in the beam path is underexposed or exposed to a distorted interference pattern from what phase mask originally generates. Technologies are discussed to overcome the problems and recent experimental results are presented as well as simulation results.

  • PDF

Temperature Measurement Using Single-Mode Fiber Interferometric Sensor (단일모드 광섬유의 간섭계 센서를 이용한 온도측정)

  • 김덕수;이상호
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.2
    • /
    • pp.1-5
    • /
    • 1985
  • In this paper, temperature-induced optical phase shifts in single-mode fibers are studied both analytically and experimentally. Temperature sensor using single-mode fiber interferometer is designed and the temperature sensitivity of the sensor system is investigated. This fiber-optic temperature sensor which employs the Mach-Zehnder arrangement is a high sensitivity sensor of phase detection type. In this type, temperature changes are ob-served as a motion of an optical interference fringe pattern. In the measurements using interferometer, one of the important problems is to detect simultaneously the number and direction of fringe displacement resulting from physical perturbations (temperature, pressure, etc.). To realize this, the array detector using multi-mode fiber is designed. By this array detector the number and direction of fringe displacement is Ineasured very conveniently.

  • PDF

단일 모드 광섬유의 길이에 따른 유효차단파장의 특성 측정

  • Jeon, Yeong-Yun;Park, Jae-Dong;Sim, Chang-Seop
    • ETRI Journal
    • /
    • v.9 no.2
    • /
    • pp.55-61
    • /
    • 1987
  • The effective cutoff wavelength of $LP_11$mode is measured as a function of fiber length for three types of single-mode optical fiber which have different characteristics in the index profile or the coating structure. The measured cutoff wavelength decreased linearly in a logarithmic scale of fiber length as increasing fiber length, and eventually became constant after 3km for two fiber types. It is found that the length dependence of cutoff wavelength is due to a mode coupling between the $LP_01$ and $LP_11$ modes.

  • PDF

Measurement of Spectral Loss and Cut-off Wavelength of Single Mode Opticla Fiber by Variable Wavelength (파장변화에 따른 단 모드 광섬유의 스펙트랄 로스 및 차단파장 측정)

  • Hong, Bong Sik;Han, Byoung Sung;Koo, Kyoung Wan
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.2
    • /
    • pp.264-268
    • /
    • 1986
  • A thchnique has been studied for the measurement of the spectral loss and the cut-off wave length, at which the first high-order mode disappears. The near-field patterns of a fiber which is excited by a variable wavelength source are used for the measurement of cut-off wavelength. Because of the absorptive phenomenon of OH- molecular vibration, spectral loss of a single mode optical fiber sample is 5.6dB/km at 1380 nm wavelength and 1dB/km at 1240 nm wavelength. From the near field intensity patterns and the mode field diameter graph for the half power width, the cut-off wavelength of the fiber is measured to be 1120 nm.

  • PDF

Improvement of Hong-Ou-Mandel Interference Visibility by Using a Single-Mode Optical-Fiber Photon Collector (단일모드 광섬유 집광기를 이용한 Hong-Ou-Mandel 간섭 가시도 향상)

  • Han, Sung-Wook;Kim, Heonoh;Seo, Joo Yeon;Kim, Myung-Whun
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1374-1377
    • /
    • 2018
  • We achieved 95% visibility in the Hong-Ou-Mandel interference experiment while we achieved only 56% visibility in a previous report. We used a 120 mW 405 nm single-mode continuous wave laser, a 5-mm-thick type-1 ${\beta}$-barium borate single crystal, standard Hong-Ou-Mandel interferometer optics, two avalanche photodiode single-photon counters, and a homemade coincidence counting unit. The photon collection unit was the key difference between the present study and the previous study. In the present experiment, we used single-mode optical fibers for photon collection, which suppressed accidental coincidence between-different mode photons by acting as a spatial filter because of its core size being much smaller than a multi-mode fiber.

Measurement of the small vibration using a fiber-optic displacement sensor (광섬유 변위 센서를 이용한 미소 진동의 측정에 관한 연구)

  • Park, Woo-Jong;Lee, Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.353-355
    • /
    • 1993
  • A single-mode fiber-optic interferometer for measuring small vibrations was constructed. The interferometer is based on the Fabry-Perot configuration that uses a single mode bidirectional fiber coupler as a beam splitter and employs peak detection scheme in the signal processing. The instrument was used to measure the displacement of the translator clamped to a piezo crystal.

  • PDF