• Title/Summary/Keyword: Single irradiation

Search Result 474, Processing Time 0.031 seconds

ACUTE RESPONSE OF THE RAT INCISOR BY SINGLE AND FRACTIONATED IRRADIATION (단일 및 분할 방사선조사에 의한 백서절치의 급성반응에 관한 연구)

  • Rhee In-Suk;Park Tae-Won;Ahn Hyung-Kyu
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.19 no.1
    • /
    • pp.39-48
    • /
    • 1989
  • Six to eight-month-old female albino rats were used as experimental animals. As an irradiation equipment, a Co-60 was used. The experimental animals were divided to; 6 of the control group, 12 of the 500cGy single irradiation group, 12 of the 1000cGy fractionated irradiation group, and 12 of the 1500cGy fractionated irradiation group. From the first week to the forth, 3 rats were picked from each group every week to be sacrificed and fixed with formalin. Those rats were observed by means of H-E stain after being taken radiograph and decalcified. The analysis of radiographic findings and light microscopic findings gives results as follows: 1. The delay of dental eruption rate was found in every group which underwent the irradiation experiment. Dentin niche, osteodentin, and dentin island were formed in the parts which were damaged by the irradiation. 2. The longer the observation period was, the more deposit of osteodentin and dentin island was formed. 3. In the single irradiation group, the damage effect was in proportion to the increase of radiation dose, whereas the damage was much less in the fractionated group receiving the same dose. 4. The 500cGy single irradiation group got temporary repairable damage, while the 1000cGy single irradiation group got considerable damage and showed much slower eruption rate than the 500cGy single irradiation group. The basal portion of the 1500cGy single irradiation group, whose growth was arrested, was destroyed. 5. The fractionated group were irradiated 500cGy everyweek. Repair was visible during the interval periods. The damage was accumulated as irradiation repeated, but degree of damage was lower than that of the 1000cGy and 1500cGy single irradiation group.

  • PDF

EFFECTS OF THE SINGLE AND FRACTIONATED IRRADIATION ON THE MICROVASCULATURE OF THE RAT SUBMANDIBULAR GLAND (단일 및 분할 방사선조사가 백서 악하선 미세혈관계에 미치는 영향)

  • Kim Seok-Ho;Choi Karp-Shik
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.23 no.1
    • /
    • pp.71-85
    • /
    • 1993
  • The purpose of the study was to investigate the effects of the single and fractionated irradiation on the microvascular structure of the submandibular gland in rats. For this study, 90 Sprague-Dawley strain rats were irradiated to their neck region with equal split doses of 9Gy for a 4 hours interval and 15Gy single dose by 6MV X-irradiation and sacrificed on the 1st, 3rd, 7th, 14th and 27th day after irradiation. The author observed histological changes at Hematoxylin and Eosin staining and PAS staining under a light microscope, and also observed distribution and structural changes of the microvasculature in rat submandibular gland using a scanning electron microscope by forming vascular resin casting. The results were as follows: 1. In the light microscopic examination, the microvasculature was slightly dilated and decreased in number on the 1st day after irradiation, and increase in number of microvasculature was observed on the 3rd day after irradiation. And then distribution of microvasculature was markedly increased on the 7th day after iradiation, but decreased on th 14th day after irradiation again. Such changes were greater in the single irradiated group than in the fractionated irradiated group. 2. The reaction to PAS staining on glandular cell was decreased on the 1st and the 3rd day after irradiation, and recovered on the 7th day after irradiation. The reaction was decreased on the 14th day after irradiation again, and recovered on the 28th day after irradiation. Changes were more apparent in the single irradiated group. 3. In the scanning electron microscopic examination, early changes of microvasculature were decreased capillary density, dilation of conduits and meandering. Increased capillary dentsity or anastomosis due to vascular reproduction and smooth curved running were observed on the 7th and 14th day after irradiation. Decreased capillary and smooth running tendency were observed on the 28th day after irradiation again. Such changes were greater in the single irradiated group than in the fractionated irradiated group.

  • PDF

Irradiation and Power Analysis According to Seasons (태양광 시스템의 계절별 일사량과 전력량)

  • Li, Ying;Jung, Jong-Chul;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.220-220
    • /
    • 2009
  • In case of favourable irradiation conditions, the ratio of irradiation to the total irradiation went up and then the irradiation increased in the area with high angle of inclination. The study showed that on a clear day with the irradiation of more than $800[W/m^2]$, the pattern of alternating current power change in the fixed system was similar with that in the single-axis tracker. On the contrary, in case of unfavourable irradiation conditions, the ratio of diffuse irradiation to the total irradiation went up and then the horizontal irradiation increased. In the demo system, the fixed system, the single-axis tracker and the dual-axis tracker all had low generation power and similar generation pattern with each other. The study showed the generation power varied with the irradiation in the fixed system, while in the single-axis tracker and the dual-axis tracker, the amount of the generation power variation was much more than the irradiation variation. The demo system was operated from 11:00 AM to 2:00 PM for generating power, during which time, 46[%] to 56[%] of the total generation power was produced. In this study. the generation power was increased by 147[%] in the fixed system, by 136[%] in the single-axis tracker, and by 164[%] in the dual-axis tracker, and the pattern of generation power was similar with the generation power variation in the situation where the irradiation increased by 140[%] in the spring with plenty of insolation. The alternating current power was more sensitive to variation of the irradiation than to that of the surface temperature of a module. The variation of the irradiation had a more positive effect on the generation power than the type of array.

  • PDF

The Effect of Distance between Two Transducers on Sonochemical Reactions in Dual Irradiation Systems (이중 초음파 조사 시스템에서 진동부 사이의 거리가 초음파 화학 반응에 미치는 영향)

  • Kim, Eunkyung;Son, Younggyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.5
    • /
    • pp.39-45
    • /
    • 2013
  • Many researchers have studied the effectiveness of ultrasound in chemical and environmental engineering fields including material synthesis, pollutant removal, cleaning, extraction, and disinfection. Acoustic cavitation induced by ultrasound irradiation in aqueous phase can cause various sonophysical and sonochemical reactions without any chemicals. However most of the previous studies focused only on the relationships between ultrasonic conditions and the results of sonochemical reactions in lab-scale sonoreactors. As a results of this, only a few studies have been devoted to design and optimization of industrial scale sonoreactors. In this study, the effect of the distance between two opposite transducer modules on sonochemical reactions was investigated in single and dual irradiation systems (334 kHz) for four distances including 50, 100, 150, and 200 mm using KI dosimetry. It was found that the dual irradiation systems provided higher performance in terms of the zeroth reaction coefficient and the cavitation yield compared to the single irradiation systems. The sonochemiluminescence (SCL) images for the visualization of the cavitation field showed that cavitation active zone was larger and sonochemical reaction intensity was much higher in the dual irradiation system than in the single irradiation system.

Analysis of Irradiation and Power per Each Seasons of Photovoltaic Systems (태양광 발전시스템의 계절별 일사량과 전력량 분석)

  • Kim, Seok-Gon;Hwang, Jun-Won;Lee, Ying;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.43-45
    • /
    • 2009
  • In case of favourable irradiation conditions, the ratio of irradiation to the total irradiation went up and then the irradiation increased in the area with high angle of inclination. The study showed that on a clear day with the irradiation of more than 80$[W/m^2]$, the pattern of alternating current power change in the fixed system was similar with that in the single-axis tracker. On the contrary, in case of unfavourable irradiation conditions, the ratio of diffuse irradiation to the total irradiation went up and then the horizontal irradiation increased. In the demo system, the fixed system, the single-axis tracker and the dual-axis tracker all had low generation power and similar generation pattern with each other. The study showed the generation power varied with the irradiation in the fixed system, while in the single-axis tracker and the dual-axis tracker, the amount of the generation Power variation was much more than the irradiation variation. The demo system was operated from 11:00 AM to 2:00 PM for generating power, during which time, 46[%] to 56[%] of the total generation power was produced. In this study, the generation power was increased by 147[%] in the fixed system, by 136[%] in the single-axis tracker, and by 164[%] in the dual-axis tracker, and the pattern of generation power was similar with the generation power variation in the situation where the irradiation increased by 140[%] in the spring with plenty of insolation. The alternating current power was more sensitive to variation of the irradiation than to that of the surface temperature of a module. The variation of the irradiation had a more positive effect on the generation power than the type of array.

  • PDF

Single and Fractionated Irradiation of Mammary Tumor of Rat (백서 유방암의 단일 및 분할 조사시 방사선치료 효과)

  • Ha, Sung-Whan;Huh, Seung-Jae;Park, Charn-Il
    • Radiation Oncology Journal
    • /
    • v.2 no.2
    • /
    • pp.173-175
    • /
    • 1984
  • The therapeutic effect of mammary breast cancer of rat (Sprague Dawley) was estimated by single and 5 fractionated irradiation of $Co^{60}-\gamma-ray$. Response rates over 50a were 20, 43, 67, $80\%$ respectively by single dose irradiation of 800, 1,200, 1,600, 2,000 rad, and 20,38, 57, $88\%$ by 5 fractionated irradiation of 1,400, 2,100, 2,800, 3,500 rad. $50\%$ tumor control dose$(TCD_{50})$ were 1,282rad, 2,312rad respectively with single and fractionated irradiation.

  • PDF

Effect of the Gamma-Ray Irradiation on the Electric and Optical Properties of SrTiO3 Single Crystals

  • Lee, Y.S.;Lim, Junhwi;Kim, E.Y.;Bu, Sang Don
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1566-1570
    • /
    • 2018
  • We investigated the visible emission property of $SrTiO_3$ (STO) single crystals irradiated with gammy-ray (${\gamma}$-ray) at various total doses up to 900 kGy. The electric and optical absorption properties of the irradiated STO samples were hardly changed with the ${\gamma}$-ray irradiation, compared with those of un-irradiated STO. In contrast, the visible emission near 550 nm increased with the ${\gamma}$-ray dose increasing. While the development of the visible emission was indicative of the increase of oxygen vacancies inside STO by the ${\gamma}$-ray irradiation, the newly generated oxygen vacancies were not significantly harmful to the electric and optical properties of STO. We concluded that the STO single crystal should have a good tolerance against the damage by the ${\gamma}$-ray irradiation.

Induction of Apoptosis in Human Osteosarcoma Cell Lines(Saos-2) by Single Fraction High Dose Irradiation (고용량 방사선 조사 후 골육종 세포주(Saos-2)의 아포프토시스 발생)

  • Kim, Jae-Do;Chung, So-Hak;Hong, Young-Gi;Choi, Jang-Seok
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.5 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • A single fraction of 50 Gy extracorporeal irradiation, as a modality of limb-sparing operation, has been used to achieve tumor necrosis in osteosarcoma. Although this modality of radiation therapy preserving the mobility of a joint is commonly practiced, the precise knowledge on the radiobiological response of osteosarcoma cell has remained to be elucidated. We therefore observed whether a single high dose irradiation caused apoptosis in osteosarcoma cells and whether the commitment to apoptosis was associated with cell kinetics. We also investigated radiation dose response along the time course for development of apoptosis following single high dose irradiation. The morphologic change in apoptosis was observed by fluorescence with Hoechst 33258 and the degree and the fraction of cells by flow cytometry. Irradiation of osteosarcoma cells with 10, 30 and 50 Gy resulted in chromatin condensation and apoptotic body formation. The degree of apoptosis in osteosarcoma cells was $29.5{\pm}3.56%$, $39.9{\pm}4.83%$ at 24 and 48 hours after 10 Gy irradiation ; $41.1{\pm}3.93%$, $66.9{\pm}5.21%$ at 24 and 48 hours after 30 Gy irradiation ; and $48.0{\pm}3.69%$, $75.6{\pm}4.65%$ at 24 and 48 hours after 50 Gy irradiation. The fraction of cells in cell-cycle kinetic was $39.2{\pm}4.3%$ in G2/M, $22.1{\pm}4.65%$ in G1 at 24 hours after 10 Gy irradiation ; $51.0{\pm}4.3%$ in G2/M, $20.4{\pm}4.7%$ in G1 at 48 hours after 10 Gy irradiation ; $40.3{\pm}3.9%$ in G2/M, $26.1{\pm}4.7%$ in G1 at 24 hours after 30 Gy irradiation ; $59.2{\pm}3.9%$ in G2/M, $5.9{\pm}5.1%$ in G1 at 48 hours after 30 Gy irradiation ; and $44.3{\pm}4.2%$ in G2/M, $21.1{\pm}3.5%$ in G1 at 24 hours after 50 Gy irradiation. The fraction of cells at 48 hours after 50 Gy irradiation could not be observed because of irradiation induced cell death of most of cells. All values for irradiated cells showed accumulation in G2/M phase and reduction in G1 phase, irrespective of irradiation dose. The results suggest that a single fraction of high dose irradiation with 50 Gy results in accumulation of cells at G2/M phase, leading to apoptosis.

  • PDF

In-situ TEM investigation of zirconium alloy under Kr+ single-beam and Kr+-He+ dual-beam synergetic irradiation

  • Zhen Wang;Qing-Xue Yan;Zhong-Qiang Fang;Chen-Yang Lu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3129-3138
    • /
    • 2024
  • The in-situ TEM irradiation experiments of zirconium alloy were conducted at 573 K, 673 K, and 773 K utilizing a 400 keV Kr + single beam and a 400 keV Kr+ and 30 keV He + dual beam. The results show that a large number of dislocation loops have been characterized in the matrix of the zirconium alloy under irradiation. With increasing the irradiation damage dose, some dislocation loops have reacted with one another to form a larger dislocation loop, which has finally formed dislocation lines or other defect structures. In zirconium alloys irradiated with Kr + single beam and Kr+ and He + dual-beam radiation, the proportion of <a> type dislocation loops with different Burgers vectors is essentially the same at low damage doses, but the proportion of interstitial type dislocation loops with the same Burgers vectors is obviously different. The amorphization of the second phase and the dissolution of the small-sized second phase were also pointed out. With the increase in temperature, the density of the dislocation loop in zirconium alloy gradually decreases, and the size of dislocation loop first increases and then decreases. Kr+ and He + dual beam irradiation increases the size of dislocation loops but decreases their density as compared with Kr + single beam irradiation.

Morphological Study on the Effects of $^{60}Co$ ${\gamma}-irradiation$ on the Testis in the Chicken ($^{60}Co$ 감마선조사가 닭의 정소에 미치는 영향에 관한 연구)

  • Lee, Dong-Myoung
    • Journal of radiological science and technology
    • /
    • v.13 no.2
    • /
    • pp.51-51
    • /
    • 1990
  • This study was undertaken to observe the effects of $^{60}Co\;{\gamma}-irradiation$ on the cell of spermatogenic epithelium in the testis of the chicken. 16-week-old chicken were provided as an experimental group and compared with control group. The experimental group was divided into a single irradiation (800, 1000, 1200 rads) and into three partial irradiation group (800/3, 1000/3, 1200/3 rads). The morphological changes of epithelial cell of the testis were observed by means of hematoxyline and eosin stain. Microstructure of spermatocyte and sperm was observed by means of semithin section of electron microscopic specimen. The results obstained are summerized as follows. 1. Spermatogonia and sertoli cells were found to be isolated from the basal membrane of seminiferous tubules as dose of $^{60}Co\;{\gamma}-irradiation$ was increased. 2. Spermatocytes of pachytene stage were seperated from the cytotplasmic process of sertoil cell in case of 1000 rads of $^{60}Co\;{\gamma}-irradiation$. 3. Normal arrangement of the cell of spermatogenic epithelium was found in control group and only the partial irradiation group of 800 rads. Vaculation in the seminiferous was pronounced in case of a single irradiation group of 800 rads, but the irradiation group of 1000 rads and 1200 rads were found to be damaged severely in both a single and a partial dose.

  • PDF