The performance of an OMR (Optical Music Recognition) system is usually determined by the characterizing features of the input music score images. Low resolution is one of the main factors leading to degraded image quality. In this paper, we handle the low-resolution problem using the super-resolution technique. We propose the use of a deep neural network with instance normalization to improve the quality of music score images. We apply instance normalization which has proven to be beneficial in single image enhancement. It works better than batch normalization, which shows the effectiveness of shifting the mean and variance of deep features at the instance level. The proposed method provides an end-to-end mapping technique between the high and low-resolution images respectively. New images are then created, in which the resolution is four times higher than the resolution of the original images. Our model has been evaluated with the dataset "DeepScores" and shows that it outperforms other existing methods.
In this paper, we present a multiple-view stereo matching method in case of moving in the direction of optical axis with stereo camera. Also we analyze the obtainable depth precision to show that multiple-view stereo increases the virtual baseline with single-view stereo. This method decides candidate points for correspondence in each image pair and then search for the correct combinations of correspondences among them using the geometrical consistency they must satisfy. Adantages of this method are capability in increasing the accuracy in matching by using the multiple stereo images and less computation due to local processing. This method computes 3-D depth by averaging the depth obtained in each multiple-view stereo. We show that the resulting depth has more precision than depth obtainable by each independent stereo when the position of image feature is uncertain due to image noise. This paper first defines a multipleview stereo agorithm in case of moving in the direction of optical axis with stereo camera and analyze the obtainable precision of computed depth. Then we represent the effect of removing the incorrect matching candidate and precision enhancement with experimental result.
Flame propagation in a four-valve spark-ignition optical engine was visualized under lean-bum conditions with A/F=18 at 2000rpm. The early flame development in a four-valve pentroof-chamber single-cylinder engine was examined with imaging of the laser-induced Mie scattered light using an image-intensified CCD camera. Flame profiles along the line-of-sight were also visualized through a quartz piston window. Two-dimensional flame structures were visualized with a Proxitronic HF-1 fast motion camera system by Mie scattering from titanium dioxide particles along a planar laser sheet generated by a copper vapor laser. The flame propagation images were subsequently analysed with an image processing programme to obtain information about the flame structure under different tumble flow conditions generated by sleeved and non-sleeved intake ports. This allowed enhancement of the flame images and calculation of the enflamed area, and the displacement of its center, as a function of the tumble flow induced by the pentroof-chamber in the vicinity of spark plug. Image processing of the early flame development quantified the correlation between flame and flow characteristics near the spark plug at the time of ignition which has been known to be one of the most important factors in cyclic combustion variations in lean-burn engines. The results were also compared with direct flame images obtained from the natural flame luminosity of the lean mixture.
Several studies have focused on multimedia transmission over wireless sensor networks (WSNs). In this paper, we propose a comprehensive and robust model to transmit images over cognitive radio WSNs (CRWSNs). We estimate the spectrum sensing frequency and evaluate its impact on the peak signal-to-noise ratio (PSNR). To enhance the PSNR, we attempt to maximize the number of pixels delivered to the receiver. To increase the probability of successful image transmission within the maximum allowed time, we minimize the average number of packets remaining in the send buffer. We use both single- and multi-channel transmissions by focusing on critical transmission events, namely hand-off (HO), No-HO, and timeout events. We deploy our advanced updating method, the dynamic parameter updating procedure, to guarantee the dynamic adaptation of model parameters to the events. In addition, we introduce our ranking method, named minimum remaining packet best channel selection, to enable us to rank and select the best channel to improve the system performance. Finally, we show the capability of our proposed image scrambling and filtering approach to achieve noticeable PSNR improvement.
Tianyu Liang;Hongyang Zhao;Seyedeh Fatemeh Saffari;Daeho Kim
국제학술발표논문집
/
The 10th International Conference on Construction Engineering and Project Management
/
pp.1065-1072
/
2024
Previous approaches to 3D excavator pose estimation via synthetic data training utilized a single virtual excavator model, low polygon objects, relatively poor textures, and few background objects, which led to reduced accuracy when the resulting models were tested on differing excavator types and more complex backgrounds. To address these limitations, the authors present a realism-centric synthetization and labeling approach that synthesizes results with improved image quality, more detailed excavator models, additional excavator types, and complex background conditions. Additionally, the data generated includes dense pose labels and depth maps for the excavator models. Utilizing the realism-centric generation method, the authors achieved significantly greater image detail, excavator variety, and background complexity for potentially improved labeling accuracy. The dense pose labels, featuring fifty points instead of the conventional four to six, could allow inferences to be made from unclear excavator pose estimates. The synthesized depth maps could be utilized in a variety of DNN applications, including multi-modal data integration and object detection. Our next step involves training and testing DNN models that would quantify the degree of accuracy enhancement achieved by increased image quality, excavator diversity, and background complexity, helping lay the groundwork for broader application of synthetic models in construction robotics and automated project management.
This study focuses on the enhancement of maskless photolithography as well as the peptide synthesis application with single crystalline silicon micromirrors. A single crystalline silicon micromirror array has been designed and fabricated in order to improve its application to the peptide synthesis. A micromirror rotates about ${\pm}\;9^{\circ}$ at the pull-in voltage, which can range from 90.7 V to 115.1 V. A $210\;{\mu}m-by-210\;{\mu}m$ micromirror device with $270\;{\mu}m$ mirror pitch meets the requirements of an adequately precise separation for peptide synthesis. Synthetic 16 by 16 peptide array corresponds to the same number of micromirrors. The large size of peptide pattern and the separation facilitate biochip experiments using fluorescence assay. The peptide pattern has been synthesized on the GPTS-PEG200 surface with BSA-blocking and thereupon the background was acetylated to reject non-specific bindings. Hence, an averaged slope at the pattern edge has been distinguishably improved in comparison to patterning results from an aluminum micromirror.
Dual-energy X-ray imaging (DEI) techniques can provide X-ray images that a certain material is suppressed or emphasized by combining two X-ray images obtained from two different x-ray spectrum. In this paper, a single-shot DEI, which uses stacked two detectors (i.e., multilayer detector), is proposed to reduce the patient dose and increase throughput in angiography. The polymethyl methacrylate (PMMA) and aluminum (Al) were selected as two basis materials for material decomposition, and material-specific images are reconstructed as a vector combination of these two materials. We investigate the contrast and noise performance of material-decomposed images using iodine phantoms with various concentrations and diameters. The single-shot DEI shows comparable performances to the conventional dual-shot DEI. In particular, the single-shot DEI shows edge enhancement in material-decomposed images due to the different spatial-resolution characteristics of upper and lower detectors. This study could be useful for designing the multilayer detector including scintillators and energy-separation filter for angiography purposes.
본 논문에서는 픽셀 기반 joint BDCP (bright and dark channel prior)와 계층적 양방향 필터를 적용하여 저 복잡도를 갖는 단일 영상 기반 안개 제거 기법을 제안한다. 픽셀 기반 joint BDCP는 기존의 패치 기반 DCP에 비해 연산량을 감소시키고, 픽셀 단위의 안개값 예측을 가능하게 하여 전달량 추정의 정확성을 높인다. 또한 에지를 보존하면서 평탄화 성능이 우수한 양방향 필터를 사용하여 전달량을 정련함으로써 후광 효과(halo effect)를 줄이고, 에지 성분에 대한 계층적 적용을 통해 반복 적용에 의한 연산량의 증가를 방지한다. 안개 성분이 포함된 다양한 영상에 대해 수행한 실험 결과는 제안하는 기법이 기존의 기법에 비해 우수한 안개 제거 성능을 보이면서 저 복잡도로 실행되어 다양한 분야에 응용될 수 있음을 나타낸다.
본 논문은 단일 영상을 이용하여 초해상도 방법을 수행하기 위해 질감-공간 영역을 분리한 뒤 세부정보를 중심으로 특징을 분류하는 방법을 제안한다. CNN(Convolutional Neural Network) 기반의 초해상도는 세부정보를 개선하기 위한 특징 추정 과정에서의 복잡한 절차와 중복된 특징 정보의 생성으로 인해 초해상도에서 가장 중요한 기준인 품질 저하가 발생할 수 있다. 제안하는 방법은 절차적 복잡성을 줄이고 중복 특징 정보의 생성을 최소화하여 초해상도 결과의 품질을 개선하기 위해 입력 영상을 질감과 공간의 두 채널로 분리하였다. 질감 채널에서는 세부정보 복원을 위해 다중스케일로 변환한 영상에 단계별 skip-connection을 적용한 잔차 블록 구조를 적용하여 특징 정제 과정을 수행함으로써 특징 추출을 개선하였고, 공간 채널에서는 평활화된 형태의 특징을 활용하여 잡음을 제거하고 구조적 특징을 유지하도록 하였다. 제안하는 방법을 이용해 실험한 결과 기존 초해상도 방법대비 PSNR 및 SSIM 성능 평가에서 향상된 결과를 보여 품질이 개선됨을 확인할 수 있었다.
본 논문에서는 다양한 영상 전처리 알고리즘들을 적용할 수 있고, 영상 인식과 같이 ISP 응용 프로그램을 병렬로 처리 가능한 SIMT(Single Instruction Multiple Threads) 기반 Image Signal Processor를 제안하였다. 기존의 ISP는 입력 영상의 품질 개선을 위하여 영상 개선 알고리즘이 하드웨어로 설계되어 처리 속도는 빠르지만 다양한 영상 처리 알고리즘에 따라 성능 최적화에 어려움이 있었다. 제안한 ISP는 명령어를 기반으로 한 프로세서로서 다양한 영상 처리 알고리즘을 수행하고 SIMT 구조를 적용하여 알고리즘을 병렬로 수행해 성능을 개선하였다. 제안하는 ISP를 검증하기 위해 Xilinx Virtex-7을 탑재한 VC707 Board를 사용하였으며 cell multicore processor와 비교했을 경우 수행시간이 약 71%, ARM Cortex-A9과 ARM Cortex-A15와 비교하였을 경우 각각 63%, 33% 성능을 개선하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.