• Title/Summary/Keyword: Single image

Search Result 2,257, Processing Time 0.032 seconds

A Study on Super Resolution Image Reconstruction for Acquired Images from Naval Combat System using Generative Adversarial Networks (생성적 적대 신경망을 이용한 함정전투체계 획득 영상의 초고해상도 영상 복원 연구)

  • Kim, Dongyoung
    • Journal of Digital Contents Society
    • /
    • v.19 no.6
    • /
    • pp.1197-1205
    • /
    • 2018
  • In this paper, we perform Single Image Super Resolution(SISR) for acquired images of EOTS or IRST from naval combat system. In order to conduct super resolution, we use Generative Adversarial Networks(GANs), which consists of a generative model to create a super-resolution image from the given low-resolution image and a discriminative model to determine whether the generated super-resolution image is qualified as a high-resolution image by adjusting various learning parameters. The learning parameters consist of a crop size of input image, the depth of sub-pixel layer, and the types of training images. Regarding evaluation method, we apply not only general image quality metrics, but feature descriptor methods. As a result, a larger crop size, a deeper sub-pixel layer, and high-resolution training images yield good performance.

Shadow Detection Based Intensity and Cross Entropy for Effective Analysis of Satellite Image (위성 영상의 효과적인 분석을 위한 밝기와 크로스 엔트로피 기반의 그림자 검출)

  • Park, Ki-hong
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.4
    • /
    • pp.380-385
    • /
    • 2016
  • Shadows are common phenomena observed in natural scenes and often bring a major problem that is affected negatively in colour image analysis. It is important to detect the shadow areas and should be considered in the pre-processing of computer vision. In this paper, the method of shadow detection is proposed using cross entropy and intensity image, and is performed in single image based on the satellite images. After converting the color image to a gray level image, the shadow candidate region has been estimated the optimal threshold value by cross entropy, and then the final shadow region has been detected using intensity image. For the validity of the proposed method, the satellite images is used to experiment. Some experiments are conducted so as to verify the proposed method, and as a result, shadow detection is well performed.

Construction of Cubic Panoramic Image for Realistic Virtual Reality Contents (실감형 VR 콘텐츠 제작을 위한 큐브 파노라마 영상의 구성)

  • Kim, Eung-Kon;Seo, Seung-Wan
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.05a
    • /
    • pp.431-435
    • /
    • 2006
  • Panoramic Image provides wider field of view than image from acquisition equipment such as a camera and provides realism and immersion to users compared with single image. Cubic panoramic image provides three dimensional access zooming and rotating in top, bottom, left and right directions. But we require commercial softwares to make a panoramic image and can see distorted images in top and bottom direction. This paper presents a method that constructs cubic panoramic virtual reality image using Apple QuickTimeVR's cubic data structure without any commercial software to make realistic image of top and bottom direction in cubic panoramic virtual reality space.

  • PDF

Image Interpolation Using Multiple Neural Networks with Spatial Frequency Characteristic (공간 주파수 특성을 가지는 다중 신경 회로망을 이용한 영상 보간)

  • 우동헌;엄일규;김유신
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.135-141
    • /
    • 2004
  • Image interpolation is an image enlargement method that calculates an empty pixel value using the information of given pixel values. Since a natural image is composed of various spatial frequency components, it is difficult for one method to interpolate pixels with various spatial frequencies. In this paper, we propose an image interpolation method using multiple neural networks with spatial frequency characteristic. Input image is segmented according to spatial frequency by local variance, and each segmented image is interpolated using neural network established for spatial frequency band. The proposed method is applied to line doubling that becomes an important part in image interpolation because of deinterlacing. In simulation the proposed algorithm shows the improved PSNR result compared with conventional algorithms and method using single neural network.

Multi-resolution Lossless Image Compression for Progressive Transmission and Multiple Decoding Using an Enhanced Edge Adaptive Hierarchical Interpolation

  • Biadgie, Yenewondim;Kim, Min-sung;Sohn, Kyung-Ah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.6017-6037
    • /
    • 2017
  • In a multi-resolution image encoding system, the image is encoded into a single file as a layer of bit streams, and then it is transmitted layer by layer progressively to reduce the transmission time across a low bandwidth connection. This encoding scheme is also suitable for multiple decoders, each with different capabilities ranging from a handheld device to a PC. In our previous work, we proposed an edge adaptive hierarchical interpolation algorithm for multi-resolution image coding system. In this paper, we enhanced its compression efficiency by adding three major components. First, its prediction accuracy is improved using context adaptive error modeling as a feedback. Second, the conditional probability of prediction errors is sharpened by removing the sign redundancy among local prediction errors by applying sign flipping. Third, the conditional probability is sharpened further by reducing the number of distinct error symbols using error remapping function. Experimental results on benchmark data sets reveal that the enhanced algorithm achieves a better compression bit rate than our previous algorithm and other algorithms. It is shown that compression bit rate is much better for images that are rich in directional edges and textures. The enhanced algorithm also shows better rate-distortion performance and visual quality at the intermediate stages of progressive image transmission.

Image Deblocking Scheme for JPEG Compressed Images Using an Adaptive-Weighted Bilateral Filter

  • Wang, Liping;Wang, Chengyou;Huang, Wei;Zhou, Xiao
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.631-643
    • /
    • 2016
  • Due to the block-based discrete cosine transform (BDCT), JPEG compressed images usually exhibit blocking artifacts. When the bit rates are very low, blocking artifacts will seriously affect the image's visual quality. A bilateral filter has the features for edge-preserving when it smooths images, so we propose an adaptive-weighted bilateral filter based on the features. In this paper, an image-deblocking scheme using this kind of adaptive-weighted bilateral filter is proposed to remove and reduce blocking artifacts. Two parameters of the proposed adaptive-weighted bilateral filter are adaptive-weighted so that it can avoid over-blurring unsmooth regions while eliminating blocking artifacts in smooth regions. This is achieved in two aspects: by using local entropy to control the level of filtering of each single pixel point within the image, and by using an improved blind image quality assessment (BIQA) to control the strength of filtering different images whose blocking artifacts are different. It is proved by our experimental results that our proposed image-deblocking scheme provides good performance on eliminating blocking artifacts and can avoid the over-blurring of unsmooth regions.

Adaptive Feature Selef-selection and Multiple SOFM Neural network for Content-based image Retrieval System (내용기반 복합 영상 검색 시스템을 위한 적응적 특징 자가선택과 다중 SOFM 신경망)

  • 임승린
    • Journal of the Korea Society of Computer and Information
    • /
    • v.5 no.2
    • /
    • pp.22-29
    • /
    • 2000
  • The purpose of this paper is to propose a method to maximize a content-based image retrieval efficiency in multiple images. To perform an image retrieval job efficiently, it is necessary to minimize the number of candidate-images. Furthermore, a miximum efficiency of image retrieval could not be expected if an image retrieval job in the multiple images is done on the basis of patterns of single image distinctive features. In this method, a multiple SOFM neural network system is adopted to select automatically distinctive feature patterns which have a maximum efficiency of image retrieval in the multiple images. In this method. an image retrieval efficiency is improved 3% than individual features and the number of candidate-images is reduced by the multiple SOFM neural network system.

  • PDF

Efficient Human body tracking Using Similarity Of Histogram Of Intensity and Hue Local Area (국부 영역의 명도와 색상 히스토그램 유사도를 이용한 인체 추적)

  • Kwak, Nae-Joung;Song, Teuk-Seob
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.149-152
    • /
    • 2016
  • In this paper, we propose an algorithm to track human body of input video from a single camera. The proposed method gets the difference image between gray image of input image and one of background image and also the difference image between hue image of input image and one of background image. Then we combine the results, splits foreground and background and detect human body objects. Then each object is numbered and is tracked. The proposed method tracks each object using the intensity and hue histogram of local area in objects. The proposed method is applied to video from a camera and tracked well the hided objects and the overlapped objects.

  • PDF

Methodologies to Improve Emotional Image Qualities by Optimizing Technological Image Quality Metrics (기술적인 화질 지표 조절양 최적화를 통한 감성 화질 향상 방안)

  • You, Jae-Hee
    • Science of Emotion and Sensibility
    • /
    • v.20 no.1
    • /
    • pp.57-66
    • /
    • 2017
  • Emotional image quality optimization methodologies are investigated using technological image quality controls based on the eye tests of various image samples. The images are evaluated based on various contrast, lightness and saturation image quality metric tone curves. The order of importance to image quality enhancements is contrast, saturation and brightness. The slopes of emotional image qualities with respect to technical image quality metric changes are found to be composed of mathematical function modelling with nearly zero, intermediate and maximum slope regions in general, which can reflect well known log and saturated as well as conventional reverse U shape natures. Image quality improvements are analyzed not only with just single but also with multiple image quality metrics. To ease the unified image quality metric analysis and control, a new function is presented to utilize both the newly found and conventional emotional image quality behaviors. It is found that the overall image quality enhancement can be realized only in a few limited cases of multiple image quality metric controls. It is also found that the kinds of image quality enhancement methodologies are not strongly dependent on image contents (genre).

Retinex-based Logarithm Transformation Method for Color Image Enhancement (컬러 이미지 화질 개선을 위한 Retinex 기반의 로그변환 기법)

  • Kim, Donghyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.9-16
    • /
    • 2018
  • Images with lower illumination from the light source or with dark regions due to shadows, etc., can improve subjective image quality by using retinex-based image enhancement schemes. The retinex theory is a method that recognizes the relative lightness of a scene, rather than recognizing the brightness of the scene. The way the human visual system recognizes a scene in a specific position can be in one of several methods: single-scale retinex, multi-scale retinex, and multi-scale retinex with color restoration (MSRCR). The proposed method is based on the MSRCR method, which includes a color restoration step, which consists of three phases. In the first phase, the existing MSRCR method is applied. In the second phase, the dynamic range of the MSRCR output is adjusted according to its histogram. In the last phase, the proposed method transforms the retinex output value into the display dynamic range using a logarithm transformation function considering human visual system characteristics. Experimental results show that the proposed algorithm effectively increases the subjective image quality, not only in dark images but also in images including both bright and dark areas. Especially in a low lightness image, the proposed algorithm showed higher performance improvement than the conventional approaches.