• Title/Summary/Keyword: Single image

Search Result 2,257, Processing Time 0.038 seconds

Danger Alert Surveillance Camera Service using AI Image Recognition technology (인공지능 이미지 인식 기술을 활용한 위험 알림 CCTV 서비스)

  • Lee, Ha-Rin;Kim, Yoo-Jin;Lee, Min-Ah;Moon, Jae-Hyun
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.814-817
    • /
    • 2020
  • The number of single-person households is increasing every year, and there are also high concerns about the crime and safety of single-person households. In particular, crimes targeting women are increasing. Although home surveillance camera applications, which are mostly used by single-person households, only provide intrusion detection functions, this service utilizes AI image recognition technologies such as face recognition and object detection to provide theft, violence, stranger and intrusion detection. Users can receive security-related notifications, relieve their anxiety, and prevent crimes through this service.

A Real-Time Stereoscopic Image Conversion method applied Image Enhancement Algorithm using Cumulative Distribution Function(CDF) (누적 분포 함수를 이용한 화질 향상 알고리즘이 적용된 입체 영상 변환 방법)

  • Yang, Yoo-Seok;Park, Jin-Sung;Choi, Myung-Ryul
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.311-312
    • /
    • 2006
  • In this paper, a real-time stereoscopic image conversion method using a single frame from a 2-D image is proposed. If original image is too much dark, it is difficult to create correct luminance value. So stereoscopic image is generated after applied image enhancement algorithm to original image. The Stereoscopic image is generated by creating depth map using vertical position information and parallax processing.

  • PDF

Deformable Registration for MRI Medical Image

  • Li, Binglu;Kim, YoungSeop;Lee, Yong-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.63-66
    • /
    • 2019
  • Due to the development of medical imaging technology, different imaging technologies provide a large amount of effective information. However, different imaging method caused the limitations of information integrity by using single type of image. Combining different image together so that doctor can obtain the information from medical image comprehensively. Image registration algorithm based on mutual information has become one of the hotspots in the field of image registration with its high registration accuracy and wide applicability. Because the information theory-based registration technology is not dependent on the gray value difference of the image, and it is very suitable for multimodal medical image registration. However, the method based on mutual information has a robustness problem. The essential reason is that the mutual information itself is not have enough information between the pixel pairs, so that the mutual information is unstable during the registration process. A large number of local extreme values are generated, which finally cause mismatch. In order to overcome the shortages of mutual information registration method, this paper proposes a registration method combined with image spatial structure information and mutual information.

A Study on Create Depth Map using Focus/Defocus in single frame (단일 프레임 영상에서 초점을 이용한 깊이정보 생성에 관한 연구)

  • Han, Hyeon-Ho;Lee, Gang-Seong;Lee, Sang-Hun
    • Journal of Digital Convergence
    • /
    • v.10 no.4
    • /
    • pp.191-197
    • /
    • 2012
  • In this paper we present creating 3D image from 2D image by extract initial depth values calculated from focal values. The initial depth values are created by using the extracted focal information, which is calculated by the comparison of original image and Gaussian filtered image. This initial depth information is allocated to the object segments obtained from normalized cut technique. Then the depth of the objects are corrected to the average of depth values in the objects so that the single object can have the same depth. The generated depth is used to convert to 3D image using DIBR(Depth Image Based Rendering) and the generated 3D image is compared to the images generated by other techniques.

Definition and Analysis of Shadow Features for Shadow Detection in Single Natural Image (단일 자연 영상에서 그림자 검출을 위한 그림자 특징 요소들의 정의와 분석)

  • Park, Ki Hong;Lee, Yang Sun
    • Journal of Digital Contents Society
    • /
    • v.19 no.1
    • /
    • pp.165-171
    • /
    • 2018
  • Shadow is a physical phenomenon observed in natural scenes and has a negative effect on various image processing systems such as intelligent video surveillance, traffic surveillance and aerial imagery analysis. Therefore, shadow detection should be considered as a preprocessing process in all areas of computer vision. In this paper, we define and analyze various feature elements for shadow detection in a single natural image that does not require a reference image. The shadow elements describe the intensity, chromaticity, illuminant-invariant, color invariance, and entropy image, which indicate the uncertainty of the information. The results show that the chromaticity and illuminant-invariant images are effective for shadow detection. In the future, we will define a fusion map of various shadow feature elements, and continue to study shadow detection that can adapt to various lighting levels, and shadow removal using chromaticity and illuminance invariant images.

Design of Format Converter for Pixel-Parallel Image Processing (화소-병렬 영상처리를 위한 포맷 변환기 설계)

  • 김현기;이천희
    • Journal of the Korea Society for Simulation
    • /
    • v.10 no.3
    • /
    • pp.59-70
    • /
    • 2001
  • Typical low-level image processing tasks require thousands of operations per pixel for each input image. Traditional general-purpose computers are not capable of performing such tasks in real time. Yet important features of traditional computers are not exploited by low-level image processing tasks. Since storage requirements are limited to a small number of low-precision integer values per pixel, large hierarchical memory systems are not necessary. The mismatch between the demands of low-level image processing tasks and the characteristics of conventional computers motivates investigation of alternative architectures. The structure of the tasks suggests employing an array of processing elements, one per pixel, sharing instructions issued by a single controller. In this paper we implemented various image processing filtering using the format converter. Also, we realized from conventional gray image process to color image process. This design method is based on realized the large processor-per-pixel array by integrated circuit technology This format converter design has control path implementation efficiently, and can be utilize the high technology without complicated controller hardware.

  • PDF

Ambient Mass Spectrometry in Imaging and Profiling of Single Cells: An Overview

  • Bharath Sampath Kumar
    • Mass Spectrometry Letters
    • /
    • v.14 no.4
    • /
    • pp.121-140
    • /
    • 2023
  • It is becoming more and more clear that each cell, even those of the same type, has a unique identity. This sophistication and the diversity of cell types in tissue are what are pushing the necessity for spatially distributed omics at the single-cell (SC) level. Single-cell chemical assessment, which also provides considerable insight into biological, clinical, pharmacodynamic, pathological, and toxicity studies, is crucial to the investigation of cellular omics (genomics, metabolomics, etc.). Mass spectrometry (MS) as a tool to image and profile single cells and subcellular organelles facilitates novel technical expertise for biochemical and biomedical research, such as assessing the intracellular distribution of drugs and the biochemical diversity of cellular populations. It has been illustrated that ambient mass spectrometry (AMS) is a valuable tool for the rapid, straightforward, and simple analysis of cellular and sub-cellular constituents and metabolites in their native state. This short review examines the advances in ambient mass spectrometry (AMS) and ambient mass spectrometry imaging (AMSI) on single-cell analysis that have been authored in recent years. The discussion also touches on typical single-cell AMS assessments and implementations.

Distance Measurement Using a Single Camera with a Rotating Mirror

  • Kim Hyongsuk;Lin Chun-Shin;Song Jaehong;Chae Heesung
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.542-551
    • /
    • 2005
  • A new distance measurement method with the use of a single camera and a rotating mirror is presented. A camera in front of a rotating mirror acquires a sequence of reflected images, from which distance information is extracted. The distance measurement is based on the idea that the corresponding pixel of an object point at a longer distance moves at a higher speed in a sequence of images in this type of system setting. Distance measurement based on such pixel movement is investigated. Like many other image-based techniques, this presented technique requires matching corresponding points in two images. To alleviate such difficulty, two kinds of techniques of image tracking through the sequence of images and the utilization of multiple sets of image frames are described. Precision improvement is possible and is one attractive merit. The presented approach with a rotating mirror is especially suitable for such multiple measurements. The imprecision caused by the physical limit could be improved through making several measurements and taking an average. In this paper, mathematics necessary for implementing the technique is derived and presented. Also, the error sensitivities of related parameters are analyzed. Experimental results using the real camera-mirror setup are reported.

A Sclable Parallel Labeling Algorithm on Mesh Connected SIMD Computers (메쉬 구조형 SIMD 컴퓨터 상에서 신축적인 병렬 레이블링 알고리즘)

  • 박은진;이갑섭성효경최흥문
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.731-734
    • /
    • 1998
  • A scalable parallel algorithm is proposed for efficient image component labeling with local operatos on a mesh connected SIMD computer. In contrast to the conventional parallel labeling algorithms, where a single pixel is assigned to each PE, the algorithm presented here is scalable and can assign m$\times$m pixel set to each PE according to the input image size. The assigned pixel set is converted to a single pixel that has representative value, and the amount of the required memory and processing time can be highly reduced. For N$\times$N image, if m$\times$m pixel set is assigned to each PE of P$\times$P mesh, where P=N/m, the time complexity due to the communication of each PE and the computation complexity are reduced to O(PlogP) bit operations and O(P) bit operations, respectively, which is 1/m of each of the conventional method. This method also diminishes the amount of memory in each PE to O(P), and can decrease the number of PE to O(P2) =Θ(N2/m2) as compared to O(N2) of conventional method. Because the proposed parallel labeling algorithm is scalable, we can adapt to the increase of image size without the hardware change of the given mesh connected SIMD computer.

  • PDF