• Title/Summary/Keyword: Single grain

Search Result 571, Processing Time 0.023 seconds

Influence of grain interaction on lattice strain evolution in two-phase polycrystals

  • Han, Tong-Seok
    • Interaction and multiscale mechanics
    • /
    • v.4 no.2
    • /
    • pp.155-164
    • /
    • 2011
  • The lattice strain evolution within polycrystalline solids is influenced by the crystal orientation and grain interaction. For multi-phase polycrystals, due to potential large differences in properties of each phase, lattice strains are even more strongly influenced by grain interaction compared with single phase polycrystals. In this research, the effects of the grain interaction and crystal orientation on the lattice strain evolution in a two-phase polycrystals are investigated. Duplex steel of austenite and ferrite phases with equal volume fraction is selected for the analysis, of which grain arrangement sensitivity is confirmed in the literature through both experiment and simulation (Hedstr$\ddot{o}$m et al. 2010). Analysis on the grain interaction is performed using the results obtained from the finite element calculation based on the model of restricted slip within crystallographic planes. The dependence of lattice strain on grain interactions as well as crystal orientation is confirmed and motivated the need for more in-depth analysis.

Device Physics of Low Temperature Poly-Si and Single Grain TFTs

  • Migliorato, P.;Yan, F.;Mo, Y.;Hong, Y.;Ishihara, R.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.309-314
    • /
    • 2004
  • Static and transient behaviour of Low Temperature Poly-Si TFTs (LTPS-TFTs) and Single Grain TFTs (SG- TFTs) are compared 3-D simulation is applied here for the first time to TFTs to account for the structure and twin boundaries in SG-TFTs.

  • PDF

Measurement of 2 Dimensional Magnetic Property of Grain-oriented Electrical Steel Sheet According to Exciting Field Direction using SST with 2 Axes Excitation (이방향 여자형 SST를 이용한 이방성 전기강판의 인가자계 방향에 따른 2차원 자계특성 측정)

  • Hwan, Eum-Young;Kim, Hong-Jung;Hong, Sun-Ki;Shin, Pan-Seok;Koh, Chang-Seop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.5
    • /
    • pp.250-257
    • /
    • 2006
  • It is well known that Grain-oriented electrical steel sheets have two dimensional magnetic properties according to the direction of exciting field such as non-linear phase difference between magnetic flux density and magnetic field intensity vectors, different iron loss and permeability even when an alternating magnetic field is applied. The measurement and application of the two dimensional magnetic properties of the Grain-oriented electrical steel sheets, therefore, are very important for the design and precise performance analysis of electric machines made of them. As the direction of exciting field changes, in this paper, the two dimensional magnetic properties of a Grain-oriented electrical steel sheet, i.e., non-linear B-H curves, phase difference between B and H, and iron loss characteristics, are measured using SST(Single Sheet Tester) which has two axes excitation. The measured results are presented in two ways: using $(B,\theta_B)$ method and using hysteresis loops along rolling and transverse directions, respectively.

A parameter study on the pre-heat treatment for the fabrication of a large grain YBCO bulk superconductor without intermediate grinding step

  • Hong, Yi-Seul;Kim, Chan-Joong;Lee, Hee-Gyoun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • This is a parameter study for the direct fabrication of a large grain YBCO bulk superconductors using Y2O3, BaCO3 and CuO powders without any grinding step. The cracks, which have been formed due to volume contraction during calcination step, have been prevented by controlling the heating rate at 930~950 ℃. It has been observed that multi-grain growth has occurred due to the dissolution of Sm123 seed due to the retention of carbon in Ba-Cu-O melt. In order to accelerate the carbon release in prior calcination heat treatment, the reduction of pellet thickness and the drilling of artificial holes have been applied. Single-grain YBCO bulk superconductor has been successfully fabricated by stacking multiple thin slab. However, the crack formation has been rather prominent for the compact with artificial holes. The use of buffer pellet, which is supposed to act as diffusion barrier, has prevented the dissolution of Sm123 seed crystal and has led to the growth of single grain of high content of carbon containing specimen.

Modelling the Tensile Instability of Nanocrystalline Metallic Materials (나노금속재료의 인장불안정에 대한 모델링)

  • Kim H. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.251-254
    • /
    • 2001
  • In this paper, the effect of grain refinement on room temperature ductility of copper was addressed. Recent experimental results have shown that this material, as well as a number of other single-phase metals that are ductile when coarse-grained, loose their ductility with decreasing grain size in the sub micrometer range. A recently developed model in which such materials are considered as effectively two-phase ones (with the grain boundaries treated as a linearly viscous second phase) was applied to analyze stability of Cu against ductile necking. As a basis, Hart's stability analysis that accounts for strain rate sensitivity effects was used. The results confirm the observed trend for reduction of ductility with decreasing grain size. The model can be applied to predicting the grain size dependence of ductility of other metallic materials as well.

  • PDF

Crystallographic Effects of Anode on the Mechanical Properties of Electrochemically Deposited Copper Films (아노드의 결정성에 따른 전기도금 구리박막의 기계적 특성 연구)

  • Kang, Byung-Hak;Park, Jieun;Park, Kangju;Yoo, Dayoung;Lee, Dajeong;Lee, Dongyun
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.714-720
    • /
    • 2016
  • We performed this study to understand the effect of a single-crystalline anode on the mechanical properties of as-deposited films during electrochemical deposition. We used a (111) single- crystalline Cu plate as an anode, and Si substrates with Cr/Au conductive seed layers were prepared for the cathode. Electrodeposition was performed with a standard 3-electrode system in copper sulfate electrolyte. Interestingly, the grain boundaries of the as-deposited Cu thin films using single-crystalline Cu anode were not distinct; this is in contrast to the easily recognizable grain boundaries of the Cu thin films that were formed using a poly-crystalline Cu anode. Tensile testing was performed to obtain the mechanical properties of the Cu thin films. Ultimate tensile strength and elongation to failure of the Cu thin films fabricated using the (111) single-crystalline Cu anode were found to have increased by approximately 52 % and 37 %, respectively, compared with those values of the Cu thin films fabricated using apoly-crystalline Cu anode. We applied ultrasonic irradiation during electrodeposition to disturb the uniform stream; we then observed no single-crystalline anode effect. Consequently, it is presumed that the single-crystalline Cu anode can induce a directional/uniform stream of ions in the electrolyte that can create films with smeared grain boundaries, which boundaries strongly affect the mechanical properties of the electrodeposited Cu films.

Quasi-Static and Dynamic Torsional Deformation Behavior of API X70 and X80 Linepipe Steels (API X70 및 X80급 라인파이프강의 준정적 및 동적 비틀림 변형 거동)

  • Kim, Yongjin;Kim, Yang Gon;Shin, Sang Yong;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.1
    • /
    • pp.8-18
    • /
    • 2010
  • This study aimed at investigating quasi-static and dynamic torsional deformation behavior of three API X70 and X80 linepipe steels. Quasi-static and dynamic torsional tests were conducted on these steels. having different grain sizes and volume fractions of acicular ferrite and polygonal ferrite, using a torsional Kolsky bar. The test data were then compared via microstructures and adiabatic shear band formation,. The dynamic torsional test results indicated that the steels rolled in the single phase region had higher maximum shear stress than the steel rolled in the two phase region, because the microstructures of the steel rolled in the single phase region were composed mainly of acicular ferrites. In the X80 steel rolled in the single phase region, the increased dynamic torsional properties could be explained by a decrease in the overall effective grain size due to the presence of acicular ferrite having smaller effective grain size. The possibility of adiabatic shear band formation was analyzed from the energy required for void initiation and variation in effective grain size.

Orientation and thickness dependence of magnetic levitation force and trapped magnetic field of single grain YBa2Cu3O7-y bulk superconductors

  • Jung, Y.;Go, S.J.;Joo, H.T.;Lee, Y.J.;Park, S.D.;Jun, B.H.;Kim, C.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.1
    • /
    • pp.30-35
    • /
    • 2017
  • The effects of the crystallographic orientation and sample thickness on the magnetic levitation forces (F) and trapped magnetic field (B) of single grain YBCO bulk superconductors were examined. Single grain YBCO samples with a (001), (110) or (100) surface were used as the test samples. The samples used for the force-distance (F-d) measurement were cooled at 77 K without a magnetic field (zero field cooling, ZFC), whereas the samples used for the B measurement were cooled under the external magnetic field of a Nd-B-Fe permanent magnet (field cooling, FC). It was found that F and B of the (001) surface were higher than those of the (110) or (100) surface, which is attributed to the higher critical current density ($J_c$) of the (001) surface. For the (001) samples with t=5-18 mm, the maximum magnetic levitation forces ($F_{max}s$) of the ZFC samples were larger than 40 N. About 80% of the applied magnetic field was trapped in the FC samples. However, the F and B decreased rapidly as t decreased below 5 mm. There exists a critical sample thickness (t=5 mm for the experimental condition of this study) for maintaining the large levitation/trapping properties, which is dependent on the material properties and magnitude of the external magnetic fields.

Interior seeding combined with top seeding for the fabrication of single grain REBCO bulk superconductors

  • Lee, Hee-Gyoun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.2
    • /
    • pp.14-18
    • /
    • 2017
  • This study presents three dimensional (3-D) seeding technique which is a modification of interior seeding. 3-D seeding is beneficial for shortening the processing period and enhancing the magnetic properties of REBCO bulk superconductors fabricated by melt growth. Oxygen channels were provided by using divided powder compacts instead of by using a rubber insert. Microstructure observations revealed that the grains grown from the seeds impinged each other and formed low angle grain boundaries of (001)/(001). It has been shown that the 3-D seeding technique reduces the volume fraction of a-c growth sector and thereby maximizes the area of a-b growth sector which attribute to the high magnetic characteristics of single grain REBCO bulk superconductors.