• Title/Summary/Keyword: Single frame

Search Result 893, Processing Time 0.027 seconds

Integrity Assessment and Verification Procedure of Angle-only Data for Low Earth Orbit Space Objects with Optical Wide-field PatroL-Network (OWL-Net)

  • Choi, Jin;Jo, Jung Hyun;Kim, Sooyoung;Yim, Hong-Suh;Choi, Eun-Jung;Roh, Dong-Goo;Kim, Myung-Jin;Park, Jang-Hyun;Cho, Sungki
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.35-43
    • /
    • 2019
  • The Optical Wide-field patroL-Network (OWL-Net) is a global optical network for Space Situational Awareness in Korea. The primary operational goal of the OWL-Net is to track Low Earth Orbit (LEO) satellites operated by Korea and to monitor the Geostationary Earth Orbit (GEO) region near the Korean peninsula. To obtain dense measurements on LEO tracking, the chopper system was adopted in the OWL-Net's back-end system. Dozens of angle-only measurements can be obtained for a single shot with the observation mode for LEO tracking. In previous work, the reduction process of the LEO tracking data was presented, along with the mechanical specification of the back-end system of the OWL-Net. In this research, we describe an integrity assessment method of time-position matching and verification of results from real observations of LEO satellites. The change rate of the angle of each streak in the shot was checked to assess the results of the matching process. The time error due to the chopper rotation motion was corrected after re-matching of time and position. The corrected measurements were compared with the simulated observation data, which were taken from the Consolidated Prediction File from the International Laser Ranging Service. The comparison results are presented in the In-track and Cross-track frame.

The frequency of defective genes in vif and vpr genes in 20 hemophiliacs is associated with Korean Red Ginseng and highly active antiretroviral therapy: the impact of lethal mutations in vif and vpr genes on HIV-1 evolution

  • Cho, Young Keol;Kim, Jung-Eun
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.149-155
    • /
    • 2021
  • Background: We have reported that internal deletions in the nef, gag, and pol genes in HIV-1-infected patients are induced in those treated with Korean Red Ginseng (KRG). KRG delays the development of resistance mutations to antiretroviral drugs. Methods: The vif-vpr genes over 26 years in 20 hemophiliacs infected with HIV-1 from a single source were sequenced to investigate whether vif-vpr genes were affected by KRG and KRG plus highly active antiretroviral therapy (ART) (hereafter called GCT) and compared the results with our previous data. Results: A significantly higher number of in-frame small deletions were found in the vif-vpr genes of KRG-treated patients than at the baseline, in control patients, and in ART-alone patients (p < 0.001). These were significantly reduced in GCT patients (p < 0.05). In contrast, sequences harboring a premature stop codon (SC) were more significant in GCT patients (10.1%) than in KRG-alone patients, control (p < 0.01), and ART-alone patients (p = 0.078 for peripheral blood mononuclear cells). The proportion of SC in Vpr was similar to that in Vif, whereas the proportion of sequences revealing SC in the env-nef genes was significantly lower than that in the pol-vif-vpr genes (p < 0.01). The genetic distance was 1.8 times higher in the sequences harboring SC than in the sequences without SC (p < 0.001). Q135P in the vif gene is significantly associated with rapid progression to AIDS (p < 0.01). Conclusion: Our data show that KRG might induce sD in the vif-vpr genes and that vif-vpr genes are similarly affected by lethal mutations.

Arabinoxylo- and Arabino-Oligosaccharides-Specific α-ʟ-Arabinofuranosidase GH51 Isozymes from the Amylolytic Yeast Saccharomycopsis fibuligera

  • Park, Tae Hyeon;Choi, Chang-Yun;Kim, Hyeon Jin;Song, Jeong-Rok;Park, Damee;Kang, Hyun Ah;Kim, Tae-Jip
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.272-279
    • /
    • 2021
  • Two genes encoding probable α-ʟ-arabinofuranosidase (E.C. 3.2.1.55) isozymes (ABFs) with 92.3% amino acid sequence identity, ABF51A and ABF51B, were found from chromosomes 3 and 5 of Saccharomycopsis fibuligera KJJ81, an amylolytic yeast isolated from Korean wheat-based nuruk, respectively. Each open reading frame consists of 1,551 nucleotides and encodes a protein of 517 amino acids with the molecular mass of approximately 59 kDa. These isozymes share approximately 49% amino acid sequence identity with eukaryotic ABFs from filamentous fungi. The corresponding genes were cloned, functionally expressed, and purified from Escherichia coli. SfABF51A and SfABF51B showed the highest activities on p-nitrophenyl arabinofuranoside at 40~45℃ and pH 7.0 in sodium phosphate buffer and at 50℃ and pH 6.0 in sodium acetate buffer, respectively. These exoacting enzymes belonging to the glycoside hydrolase (GH) family 51 could hydrolyze arabinoxylo-oligosaccharides (AXOS) and arabino-oligosaccharides (AOS) to produce only ʟ-arabinose, whereas they could hardly degrade any polymeric substrates including arabinans and arabinoxylans. The detailed product analyses revealed that both SfABF51 isozymes can catalyze the versatile hydrolysis of α-(1,2)- and α-(1,3)-ʟ-arabinofuranosidic linkages of AXOS, and α-(1,2)-, α-(1,3)-, and α-(1,5)-linkages of linear and branched AOS. On the contrary, they have much lower activity against the α-(1,2)- and α-(1,3)-double-substituted substrates than the single-substituted ones. These hydrolases could potentially play important roles in the degradation and utilization of hemicellulosic biomass by S. fibuligera.

Study on the progressive collapse resistance of CP-FBSP connections in L-CFST frame structure

  • Xiong, Qingqing;Wu, Wenbo;Zhang, Wang;Chen, Zhihua;Liu, Hongbo;Su, Tiancheng
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.437-450
    • /
    • 2022
  • When the vertical load-bearing members in high-rise structures fail locally, the beam-column joints play an important role in the redistribution of the internal forces. In this paper, a static laboratory test of three full-scale flush flange beam-reinforced connections with side and cover plates (CP-FBSP connection) with double half-span steel beams and single L-shaped columns composed of concrete-filled steel tubes (L-CFST columns) was conducted. The influence of the side plate width and cover plate thickness on the progressive collapse resistance of the substructure was thoroughly analyzed. The failure mode, vertical force-displacement curves, strain variation, reaction force of the pin support and development of internal force in the section with the assumed plastic hinge were discussed. Then, through the verified finite element model, the corresponding analyses of the thickness and length of the side plates, the connecting length between the steel beam flange and cover plate, and the vertical-force eccentricity were carried out. The results show that the failure of all the specimens occurred through the cracking of the beam flange or the cover plate, and the beam chord rotations measured by the test were all greater than 0.085 rad. Increasing the length, thickness and width of the side plates slightly reduced the progressive collapse resistance of the substructures. The vertical-force eccentricity along the beam length reduced the progressive collapse resistance of the substructure. An increase in the connecting length between the beam flange and cover plate can significantly improve the progressive collapse resistance of substructures.

Prediction of stress intensity factor range for API 5L grade X65 steel by using GPR and MPMR

  • Murthy, A. Ramachandra;Vishnuvardhan, S.;Saravanan, M.;Gandhi, P.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.565-574
    • /
    • 2022
  • The infrastructures such as offshore, bridges, power plant, oil and gas piping and aircraft operate in a harsh environment during their service life. Structural integrity of engineering components used in these industries is paramount for the reliability and economics of operation. Two regression models based on the concept of Gaussian process regression (GPR) and Minimax probability machine regression (MPMR) were developed to predict stress intensity factor range (𝚫K). Both GPR and MPMR are in the frame work of probability distribution. Models were developed by using the fatigue crack growth data in MATLAB by appropriately modifying the tools. Fatigue crack growth experiments were carried out on Eccentrically-loaded Single Edge notch Tension (ESE(T)) specimens made of API 5L X65 Grade steel in inert and corrosive environments (2.0% and 3.5% NaCl). The experiments were carried out under constant amplitude cyclic loading with a stress ratio of 0.1 and 5.0 Hz frequency (inert environment), 0.5 Hz frequency (corrosive environment). Crack growth rate (da/dN) and stress intensity factor range (𝚫K) values were evaluated at incremental values of loading cycle and crack length. About 70 to 75% of the data has been used for training and the remaining for validation of the models. It is observed that the predicted SIF range is in good agreement with the corresponding experimental observations. Further, the performance of the models was assessed with several statistical parameters, namely, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Coefficient of Efficiency (E), Root Mean Square Error to Observation's Standard Deviation Ratio (RSR), Normalized Mean Bias Error (NMBE), Performance Index (ρ) and Variance Account Factor (VAF).

Two Cases of Herpes Zoster Following Varicella Vaccination in Immunocompetent Young Children: One Case Caused by Vaccine-Strain (건강한 어린 소아에서 수두 백신 접종 후 발생한 대상포진 2예: 백신주에 의한 1예)

  • Kim, Da-Eun;Kang, Hae Ji;Han, Myung-Guk;Yeom, Hye-young;Chang, Sung Hee
    • Pediatric Infection and Vaccine
    • /
    • v.29 no.2
    • /
    • pp.110-117
    • /
    • 2022
  • Herpes zoster (HZ) has been reported in immunocompetent children who received the varicella vaccine. In vaccinated children, HZ can be caused by vaccine-strain or by wild-type varicella-zoster virus (VZV). Like wild-type VZV, varicella vaccine virus can establish latency and reactivate as HZ. We report two cases of HZ in otherwise healthy 16- and 14-month-old boys who received varicella vaccine at 12 months of age. They presented with a vesicular rash on their upper extremities three to four months after varicella vaccination. In one case, a swab was obtained by abrading skin vesicles and VZV was detected in skin specimens by polymerase chain reaction. The VZV open-reading frame 62 was sequenced and single nucleotide polymorphism analysis confirmed that the virus from skin specimen was vaccine-strain. This is the first HZ case following varicella vaccination confirmed to be caused by vaccine-strain VZV in the immunocompetent children in Korea. Pediatricians should be aware of the potential for varicella vaccine virus reactivation in vaccinated young children.

Experimental analysis of very long range spread spectrum underwater acoustic communication using vertical sensor array (수직 배열 센서를 이용한 초장거리 대역확산 수중음향통신의 실험 분석)

  • Youn, Chang-hyun;Ra, Hyung-in;An, Jeong-ha;Kim, Ki-man;Kim, In-soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.150-158
    • /
    • 2022
  • This paper presents the results of a sea trial for very long range spread spectrum underwater acoustic communication conducted in the East Sea in September 2021. Signals were collected through 8 vertical sensors, and the range between the transmitter and receiver was about 160 km. 30 bps Multi-Code Spread Spectrum (MCSS) method and 100 bps Chirp Spread Spectrum method were used for the transmitting signal generation. The results show that when the channel coding technique was not used in a single channel, the uncoded bit error rate was high, but when the Equal Gain Combining (EGC) diversity technique was used after frame synchronization in each receiving channel, the uncoded bit error rate was reduced to 0.1 or less.

Ductility demands of steel frames equipped with self-centring fuses under near-fault earthquake motions considering multiple yielding stages

  • Lu Deng;Min Zhu;Michael C.H. Yam;Ke Ke;Zhongfa Zhou;Zhonghua Liu
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.589-605
    • /
    • 2023
  • This paper investigates the ductility demands of steel frames equipped with self-centring fuses under near-fault earthquake motions considering multiple yielding stages. The study is commenced by verifying a trilinear self-centring hysteretic model accounting for multiple yielding stages of steel frames equipped with self-centring fuses. Then, the seismic response of single-degree-of-freedom (SDOF) systems following the validated trilinear self-centring hysteretic law is examined by a parametric study using a near-fault earthquake ground motion database composed of 200 earthquake records as input excitations. Based on a statistical investigation of more than fifty-two (52) million inelastic spectral analyses, the effect of the post-yield stiffness ratios, energy dissipation coefficient and yielding displacement ratio on the mean ductility demand of the system is examined in detail. The analysis results indicate that the increase of post-yield stiffness ratios, energy dissipation coefficient and yielding displacement ratio reduces the ductility demands of the self-centring oscillators responding in multiple yielding stages. A set of empirical expressions for quantifying the ductility demands of trilinear self-centring hysteretic oscillators are developed using nonlinear regression analysis of the analysis result database. The proposed regression model may offer a practical tool for designers to estimate the ductility demand of a low-to-medium rise self-centring steel frame equipped with self-centring fuses progressing in the ultimate stage under near-fault earthquake motions in design and evaluation.

Analysis of the Image Processing Speed by Line-Memory Type (라인메모리 유형에 따른 이미지 처리 속도의 분석)

  • Si-Yeon Han;Semin Jung;Bongsoon Kang
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.494-500
    • /
    • 2023
  • Image processing is currently used in various fields. Among them, autonomous vehicles, medical image processing, and robot control require fast image processing response speeds. To fulfill this requirement, hardware design for real-time processing is being actively researched. In addition to the size of the input image, the hardware processing speed is affected by the size of the inactive video periods that separate lines and frames in the image. In this paper, we design three different scaler structures based on the type of line memories, which is closely related to the inactive video periods. The structures are designed in hardware using the Verilog standard language, and synthesized into logic circuits in a field programmable gate array environment using Xilinx Vivado 2023.1. The synthesized results are used for frame rate analysis while comparing standard image sizes that can be processed in real time.

Modal parameter identification of tall buildings based on variational mode decomposition and energy separation

  • Kang Cai;Mingfeng Huang;Xiao Li;Haiwei Xu;Binbin Li;Chen Yang
    • Wind and Structures
    • /
    • v.37 no.6
    • /
    • pp.445-460
    • /
    • 2023
  • Accurate estimation of modal parameters (i.e., natural frequency, damping ratio) of tall buildings is of great importance to their structural design, structural health monitoring, vibration control, and state assessment. Based on the combination of variational mode decomposition, smoothed discrete energy separation algorithm-1, and Half-cycle energy operator (VMD-SH), this paper presents a method for structural modal parameter estimation. The variational mode decomposition is proved to be effective and reliable for decomposing the mixed-signal with low frequencies and damping ratios, and the validity of both smoothed discrete energy separation algorithm-1 and Half-cycle energy operator in the modal identification of a single modal system is verified. By incorporating these techniques, the VMD-SH method is able to accurately identify and extract the various modes present in a signal, providing improved insights into its underlying structure and behavior. Subsequently, a numerical study of a four-story frame structure is conducted using the Newmark-β method, and it is found that the relative errors of natural frequency and damping ratio estimated by the presented method are much smaller than those by traditional methods, validating the effectiveness and accuracy of the combined method for the modal identification of the multi-modal system. Furthermore, the presented method is employed to estimate modal parameters of a full-scale tall building utilizing acceleration responses. The identified results verify the applicability and accuracy of the presented VMD-SH method in field measurements. The study demonstrates the effectiveness and robustness of the proposed VMD-SH method in accurately estimating modal parameters of tall buildings from acceleration response data.