Browse > Article
http://dx.doi.org/10.4014/jmb.2012.12038

Arabinoxylo- and Arabino-Oligosaccharides-Specific α-ʟ-Arabinofuranosidase GH51 Isozymes from the Amylolytic Yeast Saccharomycopsis fibuligera  

Park, Tae Hyeon (Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University)
Choi, Chang-Yun (Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University)
Kim, Hyeon Jin (Department of Life Science, Chung-Ang University)
Song, Jeong-Rok (Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University)
Park, Damee (Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University)
Kang, Hyun Ah (Department of Life Science, Chung-Ang University)
Kim, Tae-Jip (Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University)
Publication Information
Journal of Microbiology and Biotechnology / v.31, no.2, 2021 , pp. 272-279 More about this Journal
Abstract
Two genes encoding probable α-ʟ-arabinofuranosidase (E.C. 3.2.1.55) isozymes (ABFs) with 92.3% amino acid sequence identity, ABF51A and ABF51B, were found from chromosomes 3 and 5 of Saccharomycopsis fibuligera KJJ81, an amylolytic yeast isolated from Korean wheat-based nuruk, respectively. Each open reading frame consists of 1,551 nucleotides and encodes a protein of 517 amino acids with the molecular mass of approximately 59 kDa. These isozymes share approximately 49% amino acid sequence identity with eukaryotic ABFs from filamentous fungi. The corresponding genes were cloned, functionally expressed, and purified from Escherichia coli. SfABF51A and SfABF51B showed the highest activities on p-nitrophenyl arabinofuranoside at 40~45℃ and pH 7.0 in sodium phosphate buffer and at 50℃ and pH 6.0 in sodium acetate buffer, respectively. These exoacting enzymes belonging to the glycoside hydrolase (GH) family 51 could hydrolyze arabinoxylo-oligosaccharides (AXOS) and arabino-oligosaccharides (AOS) to produce only ʟ-arabinose, whereas they could hardly degrade any polymeric substrates including arabinans and arabinoxylans. The detailed product analyses revealed that both SfABF51 isozymes can catalyze the versatile hydrolysis of α-(1,2)- and α-(1,3)-ʟ-arabinofuranosidic linkages of AXOS, and α-(1,2)-, α-(1,3)-, and α-(1,5)-linkages of linear and branched AOS. On the contrary, they have much lower activity against the α-(1,2)- and α-(1,3)-double-substituted substrates than the single-substituted ones. These hydrolases could potentially play important roles in the degradation and utilization of hemicellulosic biomass by S. fibuligera.
Keywords
Saccharomycopsis fibuligera; ${\alpha}-{\text\tiny{L}}-arabinofuranosidases$; arabino-oligosaccharides; arabinoxylo-oligosaccharides; ${\text\tiny{L}}-arabinose$;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Shinozaki A, Hosokawa S, Nakazawa M, Ueda M, Sakamoto T. 2015. Identification and characterization of three Penicillium chrysogenum α-ʟ-arabinofuranosidases (PcABF43B, PcABF51C, and AFQ1) with different specificities toward arabino-oligosaccharides. Enzyme Microb. Technol. 73-74: 65-71.   DOI
2 Bauer S, Vasu P, Persson S, Mort AJ, Somerville CR. 2006. Development and application of a suite of polysaccharide-degrading enzymes for analyzing plant cell walls. Proc. Natl. Acad. Sci. USA 103: 11417-11422.   DOI
3 Pouvreau L, Joosten R, Hinz SW, Gruppen H, Schols HA. 2011. Chrysosporium lucknowense C1 arabinofuranosidases are selective in releasing arabinose from either single or double substituted xylose residues in arabinoxylans. Enzyme Microb. Technol. 48: 397-403.   DOI
4 Ohta K, Fujii S, Higashida C. 2013. Characterization of a glycoside hydrolase family-51 α-ʟ-arabinofuranosidase gene from Aureobasidium pullulans ATCC 20524 and its encoded product. J. Biosci. Bioeng. 116: 287-292.   DOI
5 Uesaka E, Sato M, Raiju M, Kaji A. 1978. α-ʟ-Arabinofuranosidase from Rhodotorula flava. J. Bacteriol. 133: 1073-1077.   DOI
6 Yanai T, Sato M. 2000. Purification and characterization of a novel α-ʟ-arabinofuranosidase from Pichia capsulata X91. Biosci. Biotechnol. Biochem. 64: 1181-1188.   DOI
7 Fonseca C, Romao R, Rodrigues de Sousa H, Hahn-Hagerdal B, Spencer-Martins I. 2007. ʟ-Arabinose transport and catabolism in yeast. FEBS J. 274: 3589-3600.   DOI
8 Choo JH, Hong CP, Lim JY, Seo JA, Kim YS, Lee DW, et al. 2016. Whole-genome de novo sequencing, combined with RNA-Seq analysis, reveals unique genome and physiological features of the amylolytic yeast Saccharomycopsis fibuligera and its interspecies hybrid. Biotechnol. Biofuels 9: 246.   DOI
9 Chi Z, Chi Z, Liu G, Wang F, Ju L, Zhang T. 2009. Saccharomycopsis fibuligera and its applications in biotechnology. Biotechnol. Adv. 27: 423-431.   DOI
10 Lee DW, Hong CP, Kang HA. 2019. An effective and rapid method for RNA preparation from non-conventional yeast species. Anal. Biochem. 586: 113408.   DOI
11 Dumbrepatil A, Park JM, Jung TY, Song HN, Jang MU, Han NS, et al. 2012. Structural analysis of α-ʟ-arabinofuranosidase from Thermotoga maritima reveals characteristics for thermostability and substrate specificity. J. Microbiol. Biotechnol. 22: 1724-1730.   DOI
12 Oh GW, Kang Y, Choi CY, Kang SY, Kang JH, Lee ML, et al. 2019. Detailed mode of action of arabinan-debranching α-ʟ-arabinofuranosidase GH51 from Bacillus velezensis. J. Microbiol. Biotechnol. 29: 37-43.   DOI
13 Beylot MH, McKie VA, Voragen AG, Doeswijk-Voragen CH, Gilbert HJ. 2001. The Pseudomonas cellulosa glycoside hydrolase family 51 arabinofuranosidase exhibits wide substrate specificity. Biochem. J. 358: 607-614.   DOI
14 Debeche T, Cummings N, Connerton I, Debeire P, O'Donohue MJ. 2000. Genetic and biochemical characterization of a highly thermostable α-ʟ-arabinofuranosidase from Thermobacillus xylanilyticus. Appl. Environ. Microbiol. 66: 1734-1736.   DOI
15 Michlmayr H, Schümann C, Kulbe KD, del Hierro AM. 2011. Heterologously expressed family 51 α-ʟ-arabinofuranosidases from Oenococcus oeni and Lactobacillus brevis. Appl. Environ. Microbiol. 77: 1528-1531.   DOI
16 Margolles A, de los Reyes-Gavilan CG. 2003. Purification and functional characterization of a novel α-ʟ-arabinofuranosidase from Bifidobacterium longum B667. Appl. Environ. Microbiol. 69: 5096-5103.   DOI
17 Moon JS, Shin SY, Choi HS, Joo W, Cho SK, Li L, et al. 2015. In vitro digestion and fermentation properties of linear sugar-beet arabinan and its oligosaccharides. Carbohydr. Polym. 131: 50-56.   DOI
18 Numan MT, Bhosle NB. 2006. α-ʟ-Arabinofuranosidases: the potential applications in biotechnology. J. Ind. Microbiol. Biotechnol. 33: 247-260.   DOI
19 Poria V, Saini JK, Singh S, Nain L, Kuhad RC. 2020. Arabinofuranosidases: Characteristics, microbial production, and potential in waste valorization and industrial applications. Bioresour. Technol. 304: 123019.   DOI
20 Cartmell A, McKee LS, Peña MJ, Larsbrink J, Brumer H, Kaneko S et al. 2011. The structure and function of an arabinan-specific α-1,2-arabinofuranosidase identified from screening the activities of bacterial GH43 glycoside hydrolases. J. Biol. Chem. 286: 15483-15495.   DOI
21 Michlmayr H, Hell J, Lorenz C, Bohmdorfer S, Rosenau T, Kneifel W. 2013. Arabinoxylan oligosaccharide hydrolysis by family 43 and 51 glycosidases from Lactobacillus brevis DSM 20054. Appl. Environ. Microbiol. 79: 6747-6754.   DOI
22 Ichinose H, Yoshida M, Fujimoto Z, Kaneko S. 2008. Characterization of a modular enzyme of exo-1,5-α-ʟ-arabinofuranosidase and arabinan binding module from Streptomyces avermitilis NBRC14893. Appl. Microbiol. Biotechnol. 80: 399-408.   DOI
23 Linares-Pasten JA, Falck P, Albasri K, Kjellstrom S, Adlercreutz P, Logan DT et al. 2017. Three-dimensional structures and functional studies of two GH43 arabinofuranosidases from Weissella sp. strain 142 and Lactobacillus brevis. FEBS J. 284: 2019-2036.   DOI
24 Paes G, Skov LK, O'Donohue MJ, Remond C, Kastrup JS, Gajhede M et al. 2008. The structure of the complex between a branched pentasaccharide and Thermobacillus xylanilyticus GH-51 arabinofuranosidase reveals xylan-binding determinants and induced fit. Biochemistry 47: 7441-7451.   DOI
25 Zietsman AJ, de Klerk D, van Rensburg P. 2011. Coexpression of α-ʟ-arabinofuranosidase and β-glucosidase in Saccharomyces cerevisiae. FEMS Yeast Res. 11: 88-103.   DOI
26 Inacio JM, Correia IL, de Sa-Nogueira I. 2008. Two distinct arabinofuranosidases contribute to arabino-oligosaccharide degradation in Bacillus subtilis. Microbiology 154: 2719-2729.   DOI
27 Lim YR, Yeom SJ, Kim YS, Oh DK. 2011. Synergistic production of L-arabinose from arabinan by the combined use of thermostable endo- and exo-arabinanases from Caldicellulosiruptor saccharolyticus. Bioresour. Technol. 102: 4277-4280.   DOI
28 Park JM, Jang MU, Oh GW, Lee EH, Kang JH, Song YB, et al. 2015. Synergistic action modes of arabinan degradation by exo- and endo-arabinosyl hydrolases. J. Microbiol. Biotechnol. 25: 227-233.   DOI
29 Seiboth B, Metz B. 2011. Fungal arabinan and ʟ-arabinose metabolism. Appl. Microbiol. Biotechnol. 89: 1665-1673.   DOI
30 Sa-Nogueira I, Nogueira TV, Soares S, de Lencastre H. 1997. The Bacillus subtilis ʟ-arabinose (ara) operon: nucleotide sequence, genetic organization and expression. Microbiology 143: 957-969.   DOI
31 Shulami S, Raz-Pasteur A, Tabachnikov O, Gilead-Gropper S, Shner I, Shoham Y. 2011. The ʟ-arabinan utilization system of Geobacillus stearothermophilus. J. Bacteriol. 193: 2838-2850.   DOI
32 Saha BC. 2003. Hemicelluose bioconversion. J. Ind. Microbiol. Biotechnol. 30: 279-291.   DOI
33 Hizukuri S. 1999. Nutritional and physiological functions and uses of L-arabinose. J. Appl. Glycosci. 46: 159-165.   DOI
34 Seri K, Sanai K, Matsuo N, Kawakubo K, Xue C, Inoue S. 1996. ʟ-Arabinose selectively inhibits intestinal sucrase in an uncompetitive manner and suppresses glycemic response after sucrose ingestion in animals. Metabolism 45: 1368-1374.   DOI
35 Kawaguchi H, Sasaki M, Vertès AA, Inui M, Yukawa H. 2009. Identification and functional analysis of the gene cluster for ʟ-arabinose utilization in Corynebacterium glutamicum. Appl. Environ. Microbiol. 75: 3419-3429.   DOI