• Title/Summary/Keyword: Single component

Search Result 1,270, Processing Time 0.034 seconds

Design of Gain Controller of Decoupling Control of Grid-connected Inverter with LCL Filter

  • Windarko, Novie Ayub;Lee, Jin-Mok;Choi, Jae-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.124-126
    • /
    • 2008
  • Grid Connected inverter is produced current to deliver power to grid. To provide low THD current, LCL filters is effective to filter high frequency component of current output from inverter. To provide sinusoidal waveform, there are many researchers have been proposed several controllers for grid-connected inverter controllers. Synchronous Reference Frame (SRF)-based controller is the most popular methods. SRF-based controller is capable for reducing both of zero-steady state error and phase delay. But SRF based controller is contained cross-coupling components, which generate some difficulties to analyze. In this paper, SRF based controller is analyzed. By applying decoupling control, cross-coupling component is eliminated and single phase model of the system is obtained. Through this single phase model, gain controller is designed. To reduce steady state error, proportional gain is set as high as possible, but it may produce instability. To compromise between a minimum steady state error and stability, the single phase model is evaluate through Root Locus and Bode diagram. PSIM simulation is used to verify the analysis.

  • PDF

Power line interference noise elimination method based on independent component analysis in wavelet domain for magnetotelluric signal

  • Cao, Xiaoling;Yan, Liangjun
    • Geosystem Engineering
    • /
    • v.21 no.5
    • /
    • pp.251-261
    • /
    • 2018
  • With the urbanization in recent years, the power line interference noise in electromagnetic signal is increasing day by day, and has gradually become an unavoidable component of noises in magnetotelluric signal detection. Therefore, a kind of power line interference noise elimination method based on independent component analysis in wavelet domain for magnetotelluric signal is put forward in this paper. The method first uses wavelet decomposition to change single-channel signal into multi-channel signal, and then takes advantage of blind source separation principle of independent component analysis to eliminate power line interference noise. There is no need to choose the layer number of wavelet decomposition and the wavelet base of wavelet decomposition according to the observed signal. On the treatment effect, it is better than the previous power line interference removal method based on independent component analysis. Through the de-noising processing to actual magnetotelluric measuring data, it is shown that this method makes both the apparent resistivity curve near 50 Hz and the phase curve near 50 Hz become smoother and steadier than before processing, i.e., it effectively eliminates the power line interference noise.

Deriving a Probabilistic Model for Fatigue Life Based on Physical Failure Mechanism

  • Suneung Ahn
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.68
    • /
    • pp.1-7
    • /
    • 2001
  • A probabilistic model for fatigue life of a structural component is derived when the component is in a variable-amplitude loading environment. The physical mechanism which governs fatigue failure is used to model the fatigue life. Especially, the judgement of rotational symmetry in the-stress-intensity-factors results in the probability distribution for fatigue life. The probability distribution is related to the familiar truncated Gaussian distribution, which has a single parameter with a direct physical meaning.

  • PDF

Tensile Strength Variation of Binary Tablets Produced by Planetary Ball Milling (유성볼밀링으로 제조한 2성분 정제의 인장강도 변화)

  • Sim, Chol-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Planetary ball mill was used to decrease and control the particle size of excipients. The effects of the weight of sample and the revolution number of mill, and grinding time on the particle size of the ground sample were analyzed by response surface methodology. The optimum conditions for the milling of microcrystalline cellulose were 38.82 g of the weight of sample and 259 rpm of the revolution number of mill, and 45 minutes of grinding time. The predicted value of the particle size at the these conditions was $19.02{\mu}m$, of which the experimental value at the similar conditions was $18.68{\mu}m$. The tensile strength of tablets of single-component powders, such as microcrystalline cellulose, hydroxypropylmethyl cellulose and starch, binary mixtures and ground binary mixtures of these powder were measured at various relative densities. It was found that the logarithm of the tensile strength of the tablets was proportional to the relative density. A simple model, based upon Ryshkewitch-Duckworth equation that was originally proposed for porous materials, has been developed in order to predict the relationship between the tensile strength and relative density of ground binary tablets based on the properties of the constituent single-component powders. The validity of the model has been verified with experimental results for ground binary mixtures. It has demonstrated that this model can well predict the tensile strength of ground binary mixtures based upon the properties of single-component powders, such as true density, and the compositions. When the tensile strength of the mixture of microcrystalline cellulose hydroxypropylmethyl cellulose (90:10) and the ground mixture of them were compared, the tensile strength of the ground mixture decreased widely from 45.3 to 5.6% compared to the mixture in case the relative density of tablets was in the range of $0.7{\sim}0.9$. When the tensile strength of the mixture of microcrystalline cellulose starch (80:20) and the ground mixture of them were compared, the tensile strength of the ground mixture decreased widely from 31.0 to 11.6% compared to the mixture in case the relative density of tablets was in the range of $0.7{\sim}0.9$.

Independent Component Analysis of the Event-Related Potential during Visual Oddball Tasks with Multiple Difficulty Levels (다중 난이도를 갖는 시각적 Oddball 작업 수행 시 사상관련전위의 독립요소분석)

  • Kim, Ja-Hyun;Yoon, Jin;Kim, Kyung-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.1
    • /
    • pp.73-81
    • /
    • 2008
  • The purpose of this study is to observe the brain activity patterns during visual oddball tasks with two difficulty levels by the analysis of high-density event-related potential (ERP). Along with conventional statistical analysis of averaged ERP waveforms, we applied independent component analysis (ICA) for the individual, single-trial analysis and verified its effectiveness. We could identify multiple ERP components such as early visual components (P1, N1), and two components which seem to be important task-related components and showed difficulty-dependent variability (P2, P300). The P2 was found around central region at $180{\sim}220ms$, and the P300 was found globally at $300{\sim}500ms$ poststimulus. As the task became difficult, the P2 amplitude increased, and the P300 amplitude decreased. After single-trial ERPs were decomposed into multiple independent components (ICs), several ICs resulting from P2 and P300 sources were identified. These ICs were projected onto scalp electrodes and the projected ICs were statistically compared according to two task difficulties. For most subjects, the results obtained from single-trial/individual analysis using ICA gave the tendencies of amplitude change that are similar to the averaged ERP analysis for most subjects. The temporal pattern and number of ICs corresponding to ${\mu}$ rhythm was not dependent on the task difficulty. It seems that the motor response was not affected by the task difficulty.

Selective Extraction of a Single Optical Frequency Component from an Optical Frequency Comb (광 주파수 빗으로부터 단일 광 주파수 성분의 선택적 추출)

  • Han Seb Moon
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.6
    • /
    • pp.225-234
    • /
    • 2023
  • Mode-locked pulse lasers have a temporal periodicity up over a short period of time. However, in the time-frequency domain, a pulsed laser with temporal periodicity is described as an optical frequency comb with constant frequency spacing. Each frequency component of the optical frequency comb in the frequency domain is then a continuous-wave (CW) laser with hundreds of thousands of single-frequency-component CW lasers in the time domain. This optical frequency comb was developed approximately 20 years ago, enabling the development of the world's most precise atomic clocks and precise transmission of highly stable optical frequency references. In this review, research on the selective extraction of the single-frequency components of optical frequency combs and the control of the frequency components of optical combs is introduced. By presenting the concepts and principles of these optical frequency combs in a tutorial format, we hope to help readers understand the properties of light in the time-frequency domain and develop various applications using optical frequency combs.

Active Disturbance Rejection Control for Single-Phase PWM Rectifier with Current Decoupling Control

  • Yan, Ruitao;Wang, Ping
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2354-2363
    • /
    • 2018
  • This paper proposed a novel double closed control strategy for single-phase voltage source pulse width modulation (PWM) rectifier based on active disturbance rejection control (ADRC) and dq current decoupling control. First, the mathematical model of the single-phase PWM rectifier in the d-q axis synchronous rotating reference frame is established by constructing a virtual component using a second-order generalized integrator (SOGI). Then, the mathematical model is simplified according to the active power conservation, and the first-order equation of single-phase PWM rectifier voltage outer loop is acquired. A linear auto-disturbance rejection controller is used to design the voltage outer loop according to the first-order equation. Finally, the proposed control strategy and the traditional PI control are compared and verified by simulation and physical experiments. Both simulation and experimental results confirm that the proposed control strategy has excellent dynamic performance and strong rejection ability to disturbances.

Analysis of Chip-Tool Friction and Shear Characteristics in 3-D Cutting Process (3차원 절삭시 칩-공구 마찰 및 전단 특성 해석)

  • Lee, Young-Moon;Choi, Won-Sik;Song, Tae-Seong;Park, Tae-Joon;Jang, Eun-Sil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.190-196
    • /
    • 1999
  • In this study, a procedure for analyzing chip-tool friction and shear processes in 3-D cutting with a single point tool has been established. The edge of a single point tool including circular nose is modified to the equivalent straight edge, then 3-D cutting with a single point tool is reduced to equivalent oblique cutting. Transforming the conventional coordinate systems and using the measured three component of cutting forces, force components on the rake face and the shear plane of the equivalent oblique cutting system can be obtained. And it can be possible to assess the chip-tool friction and shear characteristics in 3-D cutting with a single point tool.

  • PDF

Study on single/three phase converter for motor applications of rural district (농어촌 동력용 전동기구를 위한 단상/3상변환기의 개발에 관한 연구)

  • 황영문;조철제
    • 전기의세계
    • /
    • v.25 no.4
    • /
    • pp.68-72
    • /
    • 1976
  • This study is initiated to solve the problem that the development of an electric machine to drive heavy horse-power load required in the rural district, where only single phase supply is available, is very urgent. As a method for this purpose, the single/three phase converter by single phase induction machine with a tapped auxiliary winding, running unloaded mechanically under single-phase source and supplying three-phase output to a loaded 3-phase induction motor, is devised and the pilot machine is put into test. Analysis based on hybrid equivalent circuit for the phase converter and symmertical component theory for the 3-phase load motor and practical experiment result in that optimum auxiliary winding ratio is to be 1.25 rather than theoretical .root.3/2 in order to keep the voltage unbalance ratio of 3-phase output from the converter as low as possible in both cases of starting and running the load motor.

  • PDF

Yield and Seed Quality as Affected by Water Deficit at Different Reproductive Growth Stages in Soybean

  • Kim, Wook-Han;Hong, Byung-Hee;Kim, Seok-Dong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.4
    • /
    • pp.321-329
    • /
    • 1999
  • The effect of water deficits on soybean [Glycine max (L.) Merr.] could appear on seed quality through changes of morphological plant characteristics. Two Korean genotypes, Hwangkeum (determinate growth habit) and Muhan (indeterminate growth habit), were used to examine the influences of treatment stage and method of water deficit during reproductive growth period on yield and seed quality of soybean. Water deficit at R5 or R6 stages was as damaging to seed quality as double water-deficit treatments at R2+R5 or R2+R6. However, seed from double water-deficit treatment tended to have lower oxidation-reduction potential compare to the corresponding single water-deficit treatment. In comparison with Muhan, Hwangkeum had significantly greater oxidation-reduction potential value. Seed yield per plant in both genotypes depended greatly on seed yield of branches. However, the proportion of number of branch seed to total seed umber in Hwangkeum was increased as the water deficit was applied during later reproductive stage, whereas, in Muhan the proportion was lower. Water-deficit treatments including the single and double water-deficit treatments and non-stressed treatment were able to be classified into five groups for Hwangkeum and four groups for Muhan based on the influences on yield components, number of pod, number of seed, and single seed weight, using principal component analysis. In both genotypes, R2+R5 water-deficit treatment decreased number of pod and seed, but increased single seed weight. On the contrary, R6 or R2+R6 stress increased the pod and seed number, but decreased single seed weight.

  • PDF