DOI QR코드

DOI QR Code

Selective Extraction of a Single Optical Frequency Component from an Optical Frequency Comb

광 주파수 빗으로부터 단일 광 주파수 성분의 선택적 추출

  • Han Seb Moon (Department of Physics, Pusan National University)
  • Received : 2023.10.26
  • Accepted : 2023.11.13
  • Published : 2023.12.25

Abstract

Mode-locked pulse lasers have a temporal periodicity up over a short period of time. However, in the time-frequency domain, a pulsed laser with temporal periodicity is described as an optical frequency comb with constant frequency spacing. Each frequency component of the optical frequency comb in the frequency domain is then a continuous-wave (CW) laser with hundreds of thousands of single-frequency-component CW lasers in the time domain. This optical frequency comb was developed approximately 20 years ago, enabling the development of the world's most precise atomic clocks and precise transmission of highly stable optical frequency references. In this review, research on the selective extraction of the single-frequency components of optical frequency combs and the control of the frequency components of optical combs is introduced. By presenting the concepts and principles of these optical frequency combs in a tutorial format, we hope to help readers understand the properties of light in the time-frequency domain and develop various applications using optical frequency combs.

모드 잠금 레이저는 주기성을 가지고 짧은 시간 동안 레이저 출력이 펄스로 동작한다. 그러나 시간-주파수 영역에서 모드 잠금된 펄스 레이저의 펄스 반복률의 주기성은 푸리에 변환으로 일정한 주파수 간격을 가진 광 주파수 빗과 같이 이해된다. 이때 광 주파수 빗의 각 주파수 성분은 연속적으로 발진하는 수십만 개의 단일 주파수 성분을 가진 continuous-wave 레이저들과 같다. 광 주파수 빗은 약 20년 전에 개발되어 세계에서 가장 정밀한 원자 시계의 개발을 가능케 하고 안정된 광 주파수를 정밀하게 전송하는 데에 사용되었으며, 다양한 응용연구로도 발전했다. 본 논문에서는 광 주파수 빗의 단일 주파수 구성 요소를 선택적으로 추출하고, 광 빗의 주파수 구성 요소를 제어하는 연구를 소개한다. 또한 광 주파수 빗의 개념과 원리를 해설함으로써 시간-주파수 도메인에서 빛의 특성을 이해하고, 광 주파수 빗을 활용한 다양한 응용 연구를 개발하는 데 도움을 주고자 한다.

Keywords

Acknowledgement

이 연구는 부산대학교 기본연구지원사업(2년)에 의하여 수행되었음.

References

  1. T. Udem, J. Reichert, R. Holzwarth, and T. W. Hansch, "Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser," Phys. Rev. Lett. 82, 3568-3571 (1999). https://doi.org/10.1103/PhysRevLett.82.3568
  2. J. Reichert, M. Niering, R. Holzwarth, M. Weitz, Th. Udem, and T. W. Hansch, "Phase coherent vacuum ultraviolet to radio frequency comparison with a mode-locked laser," Phys. Rev. Lett. 84, 3232-3235 (2000). https://doi.org/10.1103/PhysRevLett.84.3232
  3. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000). https://doi.org/10.1126/science.288.5466.635
  4. T. Udem, R. Holzwarth, and T. W. Hansch, "Optical frequency metrology," Nature 416, 233-237 (2002). https://doi.org/10.1038/416233a
  5. M. Takamoto, F. L. Hong, R. Higashi, and H. Katori, "An optical lattice clock," Nature 435, 321-324 (2005). https://doi.org/10.1038/nature03541
  6. S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, "An optical clock based on a single trapped 199Hg+ ion," Science 293, 825-828 (2001). https://doi.org/10.1126/science.1061171
  7. L. Essen and J. V. L. Parry, "An atomic standard of frequency and time interval: A cesium resonator," Nature 176, 280-282 (1955). https://doi.org/10.1038/176280a0
  8. H. Schnatz, B. Lipphardt, J. Helmcke, F. Riehle, and G. Zinner, "First phase coherent frequency measurement of visible radiation," Phys. Rev. Lett. 76, 18-21 (1996). https://doi.org/10.1103/PhysRevLett.76.18
  9. J. L. Hall, "Nobel lecture: defining and measuring optical frequencies," Rev. Mod. Phys. 78, 1279-1295 (2006). https://doi.org/10.1103/RevModPhys.78.1279
  10. T. W. Hansch, "Nobel lecture: Passion for precision," Rev. Mod. Phys. 78, 1297-1309 (2006). https://doi.org/10.1103/RevModPhys.78.1297
  11. J. L. Hall, "Optical frequency measurement: 40 years of technology revolutions," IEEE J. Sel. Top. Quantum Electron. 6, 1136-1144 (2000). https://doi.org/10.1109/2944.902162
  12. L. Hollberg, S. Diddams, A. Bartels, T. Fortier, and K. Kim, "The measurement of optical frequencies," Metrologia 42, S105-S124 (2005). https://doi.org/10.1088/0026-1394/42/3/S12
  13. U. Keller, "Recent developments in compact ultrafast lasers," Nature 424, 831-838 (2003). https://doi.org/10.1038/nature01938
  14. A. Baltuska, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hansch, and F. Krausz, "Attosecond control of electronic processes by intense light fields," Nature 421, 611-615 (2003). https://doi.org/10.1038/nature01414
  15. T. M. Fortier, P. A. Roos, D. J. Jones, S. T. Cundiff, R. D. R. Bhat, and J. E. Sipe, "Carrier-envelope phase-controlled quantum interference of injected photocurrents in semiconductors," Phys. Rev. Lett. 92, 147403 (2004).
  16. S. A. Diddams, L. Hollberg, and V. Mbele, "Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb," Nature 445, 627-630 (2007). https://doi.org/10.1038/nature05524
  17. C. B. Alden, S. Ghosh, S. Coburn, C. Sweeney, A. Karion, R. Wright, I. Coddington, G. B. Rieker, and K. Prasad, "Bootstrap inversion technique for atmospheric trace gas source detection and quantification using long open-path laser measurements," Atmos. Meas. Tech. Discuss. 11, 1565-1582 (2018). https://doi.org/10.5194/amt-11-1565-2018
  18. T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, "Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place," Science 319, 1808-1812 (2008). https://doi.org/10.1126/science.1154622
  19. M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D'Odorico, M. Fischer, T. W. Hansch, and A. Manescau, "High-precision wavelength calibration of astronomical spectrographs with laser frequency combs," Mon. Not. R. Astron. Soc. 380, 839-847 (2007). https://doi.org/10.1111/j.1365-2966.2007.12147.x
  20. F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, "Optical two-way time and frequency transfer over free space," Nat. Photonics 7, 434-438 (2013). https://doi.org/10.1038/nphoton.2013.69
  21. P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, "Microresonator-based solitons for massively parallel coherent optical communications," Nature 546, 274-279 (2017). https://doi.org/10.1038/nature22387
  22. J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, "Time-offlight measurement with femtosecond light pulses," Nat. Photonics 4, 716-720 (2010). https://doi.org/10.1038/nphoton.2010.175
  23. P. Del'Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, "Optical frequency comb generation from a monolithic microresonator," Nature 450, 1214-1217 (2007). https://doi.org/10.1038/nature06401
  24. T. Fortier and E. Baumann, "20 years of developments in optical frequency comb technology and applications," Commun. Phys. 2, 153 (2019).
  25. H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, "Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique," Appl. Phys. Lett. 89, 181110 (2006).
  26. S. E. Park, E. B. Kim, Y.-H. Park, D. S. Yee, T. Y. Kwon, C. Y. Park, H. S. Moon, and T. H. Yoon, "Sweep optical frequency synthesizer with a distributed-Bragg-reflector laser injection locked by a single component of an optical frequency comb," Opt. Lett. 31, 3594-3596 (2006). https://doi.org/10.1364/OL.31.003594
  27. H. S. Moon, S. E. Park, and E. B. Kim, "Coherent multi-frequency optical source generation using a femtosecond laser and its application for coherent population trapping," Opt. Express 15, 3265-3270 (2007). https://doi.org/10.1364/OE.15.003265
  28. H. S. Moon, H. Y. Ryu, S. H. Lee, and H. S. Suh, "Precision spectroscopy of Rb atoms using single comb-line selected from fiber optical frequency comb," Opt. Express 19, 15855-15863 (2011). https://doi.org/10.1364/OE.19.015855
  29. H. Y. Ryu, S. H. Lee, E. B. Kim, H. S. Suh, and H. S. Moon, "A discretely tunable multifrequency source injection locked to a spectral-mode-filtered fiber laser comb," Appl. Phys. Lett. 97, 141107 (2010).
  30. H. S. Moon, L. Lee, and J. B. Kim, "Double-resonance optical pumping of Rb atoms," J. Opt. Soc. Am. B 24, 2157-2164 (2007). https://doi.org/10.1364/JOSAB.24.002157
  31. H. S. Moon, W.-K. Lee, and H. S. Suh, "Hyperfine-structure-constant determination and absolute-frequency measurement of the Rb 4D3/2 state," Phys. Rev. A 79, 062503 (2009).