• Title/Summary/Keyword: Single column

Search Result 654, Processing Time 0.03 seconds

Routing and Wavelength Assignment in Survivable WDM Networks without Wavelength Conversion

  • Lee, Tae-Han;Park, Sung-Soo;Lee, Kyung-Sik
    • Management Science and Financial Engineering
    • /
    • v.11 no.2
    • /
    • pp.85-103
    • /
    • 2005
  • In this paper, we consider the routing and wavelength assignment problem in survivable WDM transport network without wavelength conversion. We assume the single-link failure and a path protection scheme in optical layer. When a physical network and a set of working paths are given, the problem is to select a link-disjoint protection path for each working path and assign a wavelength for each working and protection path. We give an integer programming formulation of the problem and propose an algorithm to solve it. Though the formulation has exponentially many variables, we solve the linear programming relaxation of it by using column generation technique. We devise a branch-and price algorithm to solve the column generation problem. After solving the linear programming relaxation, we apply a variable fixing procedure combined with the column generation to get an integral solution. We test the proposed algorithm on some randomly generated data and test results show that the algorithm gives very good solutions.

Hysteretic Energy Characteristics of Steel Moment Frames Under Strength Variations

  • Choi, Byong Jeong;Kim, Duck Jae
    • Architectural research
    • /
    • v.2 no.1
    • /
    • pp.61-69
    • /
    • 2000
  • This research focused on the hysteretic energy performance of 12 steel moment-resisting frames, which were intentionally designed by three types of design philosophies, strength control design, strength and drift control design, and strong-column and weak-beam control design. The energy performances of three designs were discussed In view of strength increase effect, stiffness increase effect, and strong-column and weak-beam effects. The mean hysteretic energy of the 12 basic systems were statically processed and compared to that of single-degree-of-freedom systems. Hysteretic energy was not always increased with an increase of strength and stiffness in the steel moment-resisting frames. Hysteretic energy between strong-column and weak-beam design and drift control design with the same stiffness was not sensitive each other for these types of mid-rises of steel moment-resisting frames.

  • PDF

On the Optimum Modelization for a Spray Column Direct Contact Heat Exchanger (분사칼럼식 직접접촉 열교환기의 최적 모델링을 위한 연구)

  • Yoon, S.M.;Kang, Y.H.;Kim, C.B.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 1991
  • The purpose of this study is to lay groundwork for a complete analysis of two component flow by analyzing a single component flow made of continuous fluid without dispersed phase. In order to achieve uniform velocity distributions which are desirable in designing an optimum spray column direct contact heat exchanger, the influence of injection nozzle orientation has been investigated for axial and radial injections. The results that radial injection ensures more uniform velocity distributions compared to the axial case. The flow characteristics in a spray column have been investigated with various L/D values and inlet velocities, the most uniform internal velocity distributions have been obtained for the case of L/D=10 and 0.1m/sec. In the present investigation, it is shown that radial injection method for the continuous flow is advantageous in obtaining desirable uniform velocity distributions in a spray column. It is also found that as the value of L/D increases and the inlet velocity decreases, the flow improves to be better uniform velocity distributions.

  • PDF

Progressive Collapse Resistance of RC Frames under a Side Column Removal Scenario: The Mechanism Explained

  • Hou, Jian;Song, Li
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.237-247
    • /
    • 2016
  • Progressive collapse resistance of RC buildings can be analyzed by considering column loss scenarios. Using finite element analysis and a static test, the progressive collapse process of a RC frame under monotonic vertical displacement of a side column was investigated, simulating a column removal scenario. A single-story 1/3 scale RC frame that comprises two spans and two bays was tested and computed, and downward displacement of a side column was placed until failure. Our study offers insight into the failure modes and progressive collapse behavior of a RC frame. It has been noted that the damage of structural members (beams and slabs) occurs only in the bay where the removal side column is located. Greater catenary action and tensile membrane action are mobilized in the frame beams and slabs, respectively, at large deformations, but they mainly happen in the direction where the frame beams and slabs are laterally restrained. Based on the experimental and computational results, the mechanism of progressive collapse resistance of RC frames at different stages was discussed further. With large deformations, a simplified calculation method for catenary action and tensile membrane action is proposed.

Evaluation of vierendeel peripheral frame as supporting structural element for prevention of progressive collapse

  • Khaloo, Alireza;Omidi, Hossein
    • Steel and Composite Structures
    • /
    • v.26 no.5
    • /
    • pp.549-556
    • /
    • 2018
  • Progressive building collapse occurs when failure of a structural component leads to the failure and collapse of surrounding members, possibly promoting additional failure. Global system collapse will occur if the damaged system is unable to reach a new static equilibrium configuration. The most common type of primary failure which led to the progressive collapse phenomenon, is the sudden removal of a column by various factors. In this study, a method is proposed to prevent progressive collapse phenomena in structures subjected to removal of a single column. A vierendeel peripheral frame at roof level is used to redistribute the removed column's load on other columns of the structure. For analysis, quasi-static approach is used which considers various load combinations. This method, while economically affordable is easily applicable (also for new structures as well as for existing structures and without causing damage to their architectural requirements). Special emphasis is focused on the evolution of vertical displacements of column removal point. Even though additional stresses and displacements are experienced by removal of a structural load bearing column, the proposed method considerably reduces the displacement at the mentioned point and prevents the collapse of the structural frame.

Moment-rotation prediction of precast beam-to-column connections using extreme learning machine

  • Trung, Nguyen Thoi;Shahgoli, Aiyoub Fazli;Zandi, Yousef;Shariati, Mahdi;Wakil, Karzan;Safa, Maryam;Khorami, Majid
    • Structural Engineering and Mechanics
    • /
    • v.70 no.5
    • /
    • pp.639-647
    • /
    • 2019
  • The performance of precast concrete structures is greatly influenced by the behaviour of beam-to-column connections. A single connection may be required to transfer several loads simultaneously so each one of those loads must be considered in the design. A good connection combines practicality and economy, which requires an understanding of several factors; including strength, serviceability, erection and economics. This research work focuses on the performance aspect of a specific type of beam-to-column connection using partly hidden corbel in precast concrete structures. In this study, the results of experimental assessment of the proposed beam-to-column connection in precast concrete frames was used. The purpose of this research is to develop and apply the Extreme Learning Machine (ELM) for moment-rotation prediction of precast beam-to-column connections. The ELM results are compared with genetic programming (GP) and artificial neural network (ANN). The reliability of the computational models was accessed based on simulation results and using several statistical indicators.

High Frame Rate VGA CMOS Image Sensor using Three Step Single Slope Column-Parallel ADCs

  • Lee, Junan;Huang, Qiwei;Kim, Kiwoon;Kim, Kyunghoon;Burm, Jinwook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.1
    • /
    • pp.22-28
    • /
    • 2015
  • This paper proposes column-parallel three step Single Slope Analog-to-Digital Converter (SS-ADC) for high frame rate VGA CMOS Image Sensors (CISs). The proposed three step SS-ADC improves the sampling rate while maintaining the architecture of the conventional SS-ADC for high frame rate CIS. The sampling rate of the three-step ADC is increased by a factor of 39 compared with the conventional SS-ADC. The proposed three-step SS-ADC has a 12-bit resolution and 200 kS/s at 25 MHz clock frequency. The VGA CIS using three step SS-ADC has the maximum frame rate of 200 frames/s. The total power consumption is 76 mW with 3.3 V supply voltage without ramp generator buffer. A prototype chip was fabricated in a $0.13{\mu}m$ CMOS process.

Numerical Analysis for Hydrodynamic Performance of OWC Devices with Multiple Chambers in Waves

  • Kim, Jeong-Seok;Nam, Bo Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.21-31
    • /
    • 2022
  • In recent years, various studies have been conducted on oscillating-water-column-type wave energy converters (OWC-WECs) with multiple chambers with the objective of efficiently utilizing the limited space of offshore/onshore structures. In this study, a numerical investigation based on a numerical wave tank was conducted on single, dual, and triple OWC chambers to examine the hydrodynamic performances and the energy conversion characteristics of the multiple water columns. The boundary value problem with the Laplace equation was solved by using a numerical wave tank based on a finite element method. The validity of the current numerical method was confirmed by comparing it with the measured data in the previous experimental research. We undertook a series of numerical simulations and observed that the water column motion of sloshing mode in a single chamber can be changed into the piston motion of different phases in multiple OWC chambers. Therefore, the piston motion in the multiple chambers can generate considerable airflow at a specific resonant frequency. In addition, the division of the OWC chamber results in a reduction of the time-dependent variability of the final output power from the device. As a result, the application of the multiple chambers leads to an increase of the energy conversion performance as well as a decrease of the variability of the wave energy converter.

Behavior Factor of a Steel Box Bridge with Single Column Piers (단주교각 강박스교량의 거동계수)

  • 박준봉;김종수;국승규
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.228-235
    • /
    • 2002
  • As the response spectrum method generally used in the earthquake resistant design is a linear method, the nonlinear behavior of a structure is to be reflected with a specific factor. Such factors are provided in the "Design Criteria for Roadwaybridges"as response modification factors and in the Eurocode 8, Part 2 as behavior factors. In this study a 5-span steel box bridge with single column piers is selected and the behavior factor is determined. The linear time history analyses are carried out with a simple linear model, where the nonlinear behavior of piers leading to the ductile failure mechanism is considered as predetermined characteristic curves.

  • PDF

Effect of frame connection rigidity on the behavior of infilled steel frames

  • Emami, Sayed Mohammad Motovali;Mohammadi, Majid
    • Earthquakes and Structures
    • /
    • v.19 no.4
    • /
    • pp.227-241
    • /
    • 2020
  • An experimental study has been carried out to investigate the effect of beam to column connection rigidity on the behavior of infilled steel frames. Five half scale, single-story and single-bay specimens, including four infilled frames, as well as, one bare frame, were tested under in-plane lateral cyclic reversal loading. The connections of beam to column for bare frame as well as two infill specimens were rigid, whereas those of others were pinned. For each frame type, two different infill panels were considered: (1) masonry infill, (2) masonry infill strengthened with shotcrete. The experimental results show that the infilled frames with pinned connections have less stiffness, strength and potential of energy dissipation compared to those with rigid connections. Furthermore, the validity of analytical methods proposed in the literature was examined by comparing the experimental data with analytical ones. It is shown that the analytical methods overestimate the stiffness of infilled frame with pinned connections; however, the strength estimation of both infilled frames with rigid and pinned connections is acceptable.