• 제목/요약/키워드: Single column

검색결과 654건 처리시간 0.023초

지반의 비선형거동을 고려한 단일현장타설말뚝의 의사정적해석 (Pseudostatic Analysis of Single Column/Shafts Considering Nonlinear Soil Behavior)

  • 이준규;김병철;정상섬;송성욱
    • 대한토목학회논문집
    • /
    • 제28권1C호
    • /
    • pp.31-40
    • /
    • 2008
  • 본 연구에서는 지진하중을 받는 Single Column/Shaft의 내진해석으로 의사정적해석법을 적용하였으며 해석상에서 지반의 비선형 거동특성을 나타내는 다양한 수평방향 하중전이특성(p-y 곡선, Bi-linear 곡선)를 이용하여 지반-말뚝의 상호작용을 고려하였다. 비선형 지반모델을 적용한 해석은 지반-말뚝 시스템의 지진거동을 간편히 예측할 수 있었으며 동일한 해석조건에서 응답변위법에 의한 Single Column/Shaft의 수평거동이 진도법에 근거하여 산정한 해석결과보다 크게 예측되었다. 두부경계조건과 상대강성이 Single Column/Shaft의 단면력에 미치는 영향을 분석하기 위해 다양한 지반모델에 대한 변수연구를 수행한 결과, 두부경계가 고정이고 말뚝강성이 감소할수록 수평변위가 작은 것으로 나타났으며, JRA의 Bi-linear 지반모델을 적용한 해석은 Single Column/Shaft의 수평거동을 비교적 정확히 예측하였다.

Simplified analysis method for anti-overturning of single-column pier girder bridge

  • Liang Cao;Hailei Zhou;Zhichao Ren
    • Structural Engineering and Mechanics
    • /
    • 제91권4호
    • /
    • pp.403-416
    • /
    • 2024
  • The single-column pier girder bridge, due to its low engineering cost, small footprint, and aesthetic appearance, is extensively employed in urban viaducts and interchange ramps. However, its structural design makes it susceptible to eccentric loads, flexural-torsional coupling effects, and centrifugal forces, among others. To evaluate its anti-overturning performance reasonably, it is crucial to determine the reaction force of the support for the single-column pier girder bridge. However, due to the interaction between vehicle and bridge and the complexity of vibration modes, it poses a significant challenge to analyze the theory or finite element method of single-column pier girder bridges. The unit load bearing reaction coefficient method is proposed in this study to facilitate the static analysis. Numerous parameter analyses have been conducted to account for the dynamic amplification effect. The results of these analyses reveal that the dynamic amplification factor is independent of road surface roughness but is influenced by factors such as the position of the support. Based on parameter analysis, the formula of the dynamic amplification factor is derived by fitting.

Dynamic experimental study on single and double beam-column joints in steel traditional-style buildings

  • Xue, Jianyang;Qi, Liangjie;Yang, Kun;Wu, Zhanjing
    • Structural Engineering and Mechanics
    • /
    • 제63권5호
    • /
    • pp.617-628
    • /
    • 2017
  • In order to study the failure mode and seismic behavior of the interior-joint in steel traditional-style buildings, a single beam-column joint and a double beam-column joint were produced according to the relevant building criterion of ancient architectural buildings and the engineering instances, and the dynamic horizontal loading test was conducted by controlling the displacement of the column top and the peak acceleration of the actuator. The failure process of the specimens was observed, the bearing capacity, ductility, energy dissipation capacity, strength and stiffness degradation of the specimens were analyzed by the load-displacement hysteresis curve and backbone curve. The results show that the beam end plastic hinge area deformed obviously during the loading process, and tearing fracture of the base metal at top and bottom flange of beam occurred. The hysteresis curves of the specimens are both spindle-shaped and plump. The ultimate loads of the single beam-column joint and double beam-column joint are 48.65 kN and 70.60 kN respectively, and the equivalent viscous damping coefficients are more than 0.2 when destroyed, which shows the two specimens have great energy dissipation capacity. In addition, the stiffness, bearing capacity and energy dissipation capacity of the double beam-column joint are significantly better than that of the single beam-column joint. The ductility coefficients of the single beam-column joint and double beam-column joint are 1.81 and 1.92, respectively. The cracks grow fast when subjected to dynamic loading, and the strength and stiffness degradation is also degenerated quickly.

반복수평재하시험을 통한 단일형현장타설말뚝의 거동분석 (Analysis of Horizontal Behavior of a Single Column/Shaft by Horizontal Two-way Pile Load Test)

  • 정상섬;송성욱;김병철
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.1132-1143
    • /
    • 2008
  • A single Column/Shaft which extended the pile to the column of the bridge with same diameter has better safety and economical profit, but it usually has larger lateral displacement due to lateral loads such as wind, earthquake, wave, etc. A series of horizontal pile load testing were performed to study the lateral behavior of single column/shaft with varying different free lengths and embedded pile lengths. Eight instrumented test piles were cast-in-placed by bonding strain gauges at certain locations on both faces of the pile to measure bending moment, from two-way loadings. Linear variable differential transformers(LVDTs) were installed to measure the lateral pile displacement. Based on this, it is found that the test single column/shaft with different free lengths shows different failure modes. If the test pile has a longer free length, the failure occurs at the near the ground surface, but the shorter one's failure occurs at the below the ground surface.

  • PDF

Non-invasive steel haunch upgradation strategy for seismically deficient reinforced concrete exterior beam-column sub-assemblages

  • Kanchanadevi, A.;Ramanjaneyulu, K.
    • Steel and Composite Structures
    • /
    • 제28권6호
    • /
    • pp.719-734
    • /
    • 2018
  • Prior to the introduction of modern seismic guidelines, it was a common practice to provide straight bar anchorage for beam bottom reinforcement of gravity load designed building. Exterior joints with straight bar anchorages for beam bottom reinforcements are susceptible to sudden anchorage failure under load reversals and hence require systematic seismic upgradation. Hence in the present study, an attempt is made to upgrade exterior beam-column sub-assemblage of a three storied gravity load designed (GLD) building with single steel haunch. Analytical formulations are presented for evaluating the haunch forces in single steel haunch retrofit. Influence of parameters that affect the efficacy and effectiveness of the single haunch retrofit are also discussed. The effectiveness of the single haunch retrofit for enhancing seismic performance of GLD beam-column specimen is evaluated through experimental investigation under reverse cyclic loading. The single steel haunch retrofit had succeeded in preventing the anchorage failure of beam bottom bars of GLD specimen, delaying the joint shear damage and partially directing the damage towards the beam. A remarkable improvement in the load carrying capacity of the upgraded GLD beam-column sub-assemblage is observed. Further, a tremendous improvement in the energy dissipation of about 2.63 times that of GLD specimen is observed in the case of upgraded GLD specimen. The study also underlines the efficacy of single steel haunch retrofit for seismic upgradation of deficient GLD structures.

Simplified Design Procedure for Reinforced Concrete Columns Based on Equivalent Column Concept

  • Afefy, Hamdy M.;El-Tony, El-Tony M.
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권3호
    • /
    • pp.393-406
    • /
    • 2016
  • Axially loaded reinforced concrete columns are hardly exist in practice due to the development of some bending moments. These moments could be produced by gravity loads or the lateral loads. First, the current paper presents a detailed analysis on the overall structural behavior of 15 eccentrically loaded columns as well as one concentrically loaded control one. Columns bent in either single curvature or double curvature modes are tested experimentally up to failure under the effect of different end eccentricities combinations. Three end eccentricities ratio were studied, namely, 0.1b, 0.3b and 0.5b, where b is the column width. Second, an expression correlated the decay in the normalized axial capacity of the column and the acting end eccentricities was developed based on the experimental results and then verified against the available formula. Third, based on the equivalent column concept, the equivalent pin-ended columns were obtained for columns bent in either single or double curvature modes. And then, the effect of end eccentricity ratio was correlated to the equivalent column length. Finally, a simplified design procedure was proposed for eccentrically loaded braced column by transferring it to an equivalent axially loaded pin-ended slender column. The results of the proposed design procedure showed comparable results against the results of the ACI 318-14 code.

Design procedure for seismic retrofit of RC beam-column joint using single diagonal haunch

  • Zabihi, Alireza;Tsang, Hing-Ho;Gad, Emad F.;Wilson, John L.
    • Structural Engineering and Mechanics
    • /
    • 제71권4호
    • /
    • pp.341-350
    • /
    • 2019
  • Exterior beam-column joint is typically the weakest link in a limited-ductile reinforced concrete (RC) frame structure. The use of diagonal haunch element has been considered as a desirable seismic retrofit option for reducing the seismic demand at the joint. Previous research globally has focused on implementing double haunches, while the use of single haunch element as a less-invasive and more architecturally favorable retrofit option has not been investigated. In this paper, the key formulations and a design procedure for the single haunch system for retrofitting RC exterior beam-column joint are developed. An application of the proposed design procedure is then illustrated through a case study.

기둥 지지된 슬래브교의 모멘트 간략산정법에 관한 연구 (Bending Moment Analysis simpiified in Slab Bridges supported by Column Type Piers)

  • 이채규;김영인;김우
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.73-78
    • /
    • 1992
  • It would be much effective that single column type pier is used in concrete slab bridges rather than gravity type pier is used. To determine the longitudinal bonging moment in concrete slab bridges supported by single column type piers, the concept of effective width is applied. By elastic plate theory cooperated with finite element method, the distribution of the longitudinal moment of the slab supported by single column type piers is studied. The main variables are span, width, and thickness of the slab and column section size. Then the analytical results obtained are summarized and analysed to evaluate the maximum longitudinal negative moment by simple beam analysis.

  • PDF

단일 쇄석다짐말뚝의 지지력 특성과 주요 설계 파라미터에 관한 고찰 (The study on the Characteristics of Ultimate Bearing Capacity and Major Design Parameters for Single Stone Column)

  • 천병식;김원철;조양운
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.552-560
    • /
    • 2004
  • Stone column is a soil improvement method and can be applicable for loose sand or weak cohesive soil. Since the lack of sand in Korea, stone column seems one of the most adaptable approach for poor ground as a soil improvement method. However, this method was not studied for practical application. In this paper, the most effective design parameters for the being capacity of stone column were studied. The parametric study of major design factors for single stone column was carried out under the bulging and general shear failure condition, respectively. Especially, a test result of single stone column by static load was compared with the bearing capacity values of suggested formulas. The analysis result showed that the ultimate bearing capacity by the formula was much less than the measured value by the static load test. Especially, the result of the parametric study under general shear failure condition showed that the bearing capacity has apparent difference between each suggested formulas with the variation of the major design parameters. Therefore, the result of this study can be a suggestion which is applicable for the field test and the future research.

  • PDF