• Title/Summary/Keyword: Single cell Performance

Search Result 499, Processing Time 0.03 seconds

Electrochemical Performance of a Metal-supported Solid Oxide Electrolysis Cell

  • Lee, Taehee;Jeon, Sang-Yun;Yoo, Young-Sung
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권2호
    • /
    • pp.121-125
    • /
    • 2019
  • A YSZ electrolyte based ceramic supported Solid Oxide Cell (SOC) and a metal interconnect supported SOC was investigated under both fuel cell and co-electrolysis (steam and $CO_2$) mode at $800^{\circ}C$. The single cell performance was analyzed by impedance spectra and product gas composition with gas chromatography(GC). The long-term performance in the co-electrolysis mode under a current density of $800mA/cm^2$ was obtained using steam and carbon dioxide ($CO_2$) mixed gas condition.

가정용 고분자 연료전지의 중합체에 대한 특성해석 (The characteristic analysis for polymer of household macromolecule fuel cell)

  • 조영래;김남화;한경희;윤신용;백수현;김일남
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1722-1724
    • /
    • 2005
  • The focus of this paper is to develop a mathematical model for investigating the dynamic performance of a polymer electrolyte membrane fuel cell. The model in this work is based on physical laws having clear significance in replicating the fuel cell system and can easily be used to set up different operational strategies. Simulation results display the transient behavior of the voltage within each single cell, and also within a number of such single cells combined into a fuel cell stack system. A linear as well as a nonlinear analysis of the polymer electrolyte membrane fuel cell system(PEMFC) has been discussed in order to present a complete and comprehensive view of this kind of modeling. Also, a comparison of the two kinds of analysis has been performed. Finally, the various characteristics of the fuel cell system are plotted in order to help us understand its dynamic behavior. Results indicate that there is a considerable amount of error in the modeling process if we use a linear model of the fuel cell. Thus, the nonlinearities present in the fuel cell system should be taken into account in order to obtain a better understanding of the dynamic behavior of the fuel cell system.

  • PDF

Cathode에 따른 휴대용 PEM 연료전지의 성능 변화 (Performance of the PEMFC for the mobile devices according to cathode)

  • 이세원;이강인;박민수;주종남
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.550-553
    • /
    • 2008
  • In this paper, experiments of air-breathing proton exchange membrane fuel cell (PEMFC) for mobile devices were carried out according to the cathode conditions. These conditions are defined by the cathode flow field plate type (the channel type, the open type) and the cathode surface direction. Single cell and 6-cell stack were used in this experiments. The experimental results showed that the open type cathode flow field plate gave better performance for small size PEMFCs because the open type cathode plate allowed better air convection than the channel type cathode plate. In the experiments related to the direction of the slits on the cathode flow field plate, the horizontal slit cell was better than the vertical slit cell. With respect to the cathode surface direction, when the cathode surface is placed in the direction normal to the ground, PEMFC generated more stable power in the mass transport loss region.

  • PDF

SLC/MLC 혼합 플래시 메모리를 이용한 하이브리드 하드디스크 설계 (Designing Hybrid HDD using SLC/MLC combined Flash Memory)

  • 홍성철;신동군
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권7호
    • /
    • pp.789-793
    • /
    • 2010
  • 최근 플래시 메모리 기반 비휘발성 캐시가 저장장치의 성능과 전력 소모 측면에서 효과적인 해법으로 떠오르고 있다. 비휘발성 캐시로 저장장치의 성능을 향상시키고 전력 소모를 줄이기 위해, 가격이 싸고 용량이 큰 multi-level-cell (MLC) 플래시 메모리를 사용하는 것이 좋다. 그러나 MLC 플래시 메모리의 수명은 single-level-cell (SLC) 플래시 메모리보다 훨씬 짧기 때문에 전체 저장장치의 수명이 짧아질 수 있다. 이러한 약점을 최소화하기 위해 SLC 플래시 메모리와 MLC플래시 메모리를 결합한 형태의 비휘발성 캐시를 고려해볼 수 있다. 본 논문에서는 SLC와 MLC를 결합한 플래시 메모리를 버퍼로 사용하는 새로운 하이브리드 하드디스크 구조를 제안한다.

A Simulated Prediction for Influences of Operating Condition in an Alkaline Fuel Cell

  • Jo Jang-Ho;Yi Sung-Chul
    • 전기화학회지
    • /
    • 제2권3호
    • /
    • pp.163-170
    • /
    • 1999
  • AFC 단전지에서 운전조건의 영향은 이제까지 자세히 연구된 바 없다. 본 연구에서는 초기 전해질 농도와 가스 운전압력의 영향을 살펴보기 위하여 1차원 등온 모델을 이용해 전산모사를 수행하였다. 결과에 의하면, base-case에서 최적 전해질 농도는 $3.0\~3.5M$사이에 있는 것으로 발견되었다. 전해질 농도에 따른 전지 성능의 변화는 주로 양쪽 전극의 전하전달 저항과 용해된 기체의 헨리상수 및 액상확산이 원인인 것으로 밝혀졌다. 또한, 운전 압력의 증가는 반응속도와 가스의 용해도를 증가시켰으며, 이것으로 인해 전지 성능이 상당히 향상되는 것으로 조사되었다

Comparative Study on the Organic Solvent of IrO2-Ionomer Inks used for Spray Coating of Anode for Proton Exchange Membrane Water Electrolysis

  • Hye Young Jung;Yongseok Jun;Kwan-Young Lee;Hyun S. Park;Sung Ki Cho;Jong Hyun Jang
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권3호
    • /
    • pp.283-292
    • /
    • 2023
  • Currently, spray coating has attracted interest in the mass production of anode catalyst layers for proton exchange membrane water electrolysis (PEMWE). The solvent in the spray ink is a critical factor for the catalyst dispersion in ink, the microstructure of the catalyst layer, and the PEMWE performance. Herein, various pure organic solvents were examined as a substitute for conventional isopropanol-deionized water (IPA-DIW) mixture for ink solvent. Among the polar solvents that exhibited better IrO2 dispersion over nonpolar solvents, 2-butanol (2-BuOH) was selected as a suitable candidate. The PEMWE single cells were fabricated using 2-BuOH at various ionomer contents, spray nozzle types, and drying temperatures, and their performance was compared to the cells fabricated using a conventional IPA-DIW mixture. The PEMWE single cells with 2-BuOH solvent showed good performances comparable to the conventional IPA-DIW mixture case and highly durable performances under accelerated degradation tests.

PERFORMANCE ANALYSIS OF AAL MULTIPLEXER WITH CBR TRAFFIC AND BURSTY TRAFFIC

  • Park, Chul-Geun;Han, Dong-Hwan
    • Journal of applied mathematics & informatics
    • /
    • 제8권1호
    • /
    • pp.81-95
    • /
    • 2001
  • This paper models and evaluates the AAL multiplexer to analyze AAL protocol in ATM networks. We consider an AAL multiplexer in which a single periodically determinsitic CBR traffic stream and several variable size bursty background traffic streams are multiplexed and one ATM cell stream goes out. We model the AAL multiplexer as a B/sup X/ + D/D/1/K queue and analyze this queueing system. We represent various performance measures such as loss probability and waiting time in the basis of cell and packet.

고분자 전해질 막을 이용한 일체형 재생 연료전지용 촉매전극 개발 (Development of Bifunctional Electrocatalyst for PEM URFC)

  • 임성대;박구곤;손영준;양태현;윤영기;이원용;김창수
    • 한국수소및신에너지학회논문집
    • /
    • 제15권1호
    • /
    • pp.23-31
    • /
    • 2004
  • For the fabrication of high efficient bifunctional electrocatalyst of oxygen electrode for PEM URFC (Polymer Electrolyte Membrane Unitized Regenerative Fuel Cell), which is a promising energy storage and conversion system using hydrogen as the energy medium, several bifunctional electrocatalysts were prepared and tested in a single cell URFC system. The catalysts for oxygen electrode revealed fuel cell performance in the order of Pt black > PtIr > PtRuOx > PtRu ~ PtRuIr > PtIrOx, whereas water electrolysis performance in the order of PtIr ~ PtIrOx > PtRu > PtRuIr > PtRuOx ~ Pt black. Considering both reaction modes PtIr was the most effective elctrocatalyst for oxygen electrode of present PEM URFC system. In addition, the water electrolysis performance was significantly improved when Ir or IrOx was added to Pt black just 1 wt.% without the decrease of fuel cell performance. Based on the catalyst screening and the optimization of catalyst composition and loading, the optimum catalyst electrodes for PEM URFC were $1.0mg/cm^2$ of Pt black as hydrogen electrode and $2.0mg/cm^2$ of PtIr (99:1) as oxygen electrode.

A Review on Membranes and Catalysts for Anion Exchange Membrane Water Electrolysis Single Cells

  • Cho, Min Kyung;Lim, Ahyoun;Lee, So Young;Kim, Hyoung-Juhn;Yoo, Sung Jong;Sung, Yung-Eun;Park, Hyun S.;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권3호
    • /
    • pp.183-196
    • /
    • 2017
  • The research efforts directed at advancing water electrolysis technology continue to intensify together with the increasing interest in hydrogen as an alternative source of energy to fossil fuels. Among the various water electrolysis systems reported to date, systems employing a solid polymer electrolyte membrane are known to display both improved safety and efficiency as a result of enhanced separation of products: hydrogen and oxygen. Conducting water electrolysis in an alkaline medium lowers the system cost by allowing non-platinum group metals to be used as catalysts for the complex multi-electron transfer reactions involved in water electrolysis, namely the hydrogen and oxygen evolution reactions (HER and OER, respectively). We briefly review the anion exchange membranes (AEMs) and electrocatalysts developed and applied thus far in alkaline AEM water electrolysis (AEMWE) devices. Testing the developed components in AEMWE cells is a key step in maximizing the device performance since cell performance depends strongly on the structure of the electrodes containing the HER and OER catalysts and the polymer membrane under specific cell operating conditions. In this review, we discuss the properties of reported AEMs that have been used to fabricate membrane-electrode assemblies for AEMWE cells, including membranes based on polysulfone, poly(2,6-dimethyl-p-phylene) oxide, polybenzimidazole, and inorganic composite materials. The activities and stabilities of tertiary metal oxides, metal carbon composites, and ultra-low Pt-loading electrodes toward OER and HER in AEMWE cells are also described.

단결정 태양전지의 단락 및 개방 시 노광에 의한 초기 출력저하 비교 분석 (Analysis and comparison of initial performance degradation for single crystalline silicon solar cell under open and short circuit)

  • 정태희;김태범;신준오;윤나리;우성철;강기환;안형근;한득영
    • 한국태양에너지학회 논문집
    • /
    • 제30권6호
    • /
    • pp.16-21
    • /
    • 2010
  • It is well-known that Boron-doped Cz Si solar cells suffer light-induced degradation due to boron-oxygen defect which is responsible of a reduction in lifetime and hence efficiency. In this paper, we assume that PV solar cell has been connected with variable load to account the real operating condition and it shows different light-induced degradation of Si solar cell. To evaluate the effect of light-induced degradation for solar cell with various load, Single crystalline solar cells are connected with open and short circuits during light exposure. Isc-Voc curve evaluate light induced degradation of solar cells and the reason is explained as a change for serial resistance. From the results, Electrical characteristics of solar cells show better performance under short circuit conditions, after light exposure.