• Title/Summary/Keyword: Single cavity

Search Result 465, Processing Time 0.029 seconds

Optimal Thermal Design of a Single Heat Source in a Cavity (Cavity내의 단일 열원에 대한 최적 열적설계)

  • Yae, Y.T.;Choo, H.L.;Kim, H.W.
    • Solar Energy
    • /
    • v.19 no.1
    • /
    • pp.77-86
    • /
    • 1999
  • The optimal thermal design of a single heat source on one wall of a vertical open top cavity was studied experimentally. The temperature and flow fields in the cavity were visualized. The objectives of this study is to obtain the best location of the single heat source and to examine the effects of heat source protrusion, substrate thermal conductivity and cavity aspect ratio on the natural convection cooling due to a single heat source. As the results, the cooling effect for the copper substrate is superior to that of the epoxy-resin substrate and is improved with increasing cavity width. For the epoxy-resin substrate of lower conductivity, the protrusion of the heaters plays a role in decreasing the cooling effect. The best location was the mid-height of the substrate.

  • PDF

Fabrication Tolerance of InGaAsP/InP-Air-Aperture Micropillar Cavities as 1.55-㎛ Quantum Dot Single-Photon Sources

  • Huang, Shuai;Xie, Xiumin;Xu, Qiang;Zhao, Xinhua;Deng, Guangwei;Zhou, Qiang;Wang, You;Song, Hai-Zhi
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.509-515
    • /
    • 2020
  • A practical single photon source for fiber-based quantum information processing is still lacking. As a possible 1.55-㎛ quantum-dot single photon source, an InGaAsP/InP-air-aperture micropillar cavity is investigated in terms of fabrication tolerance. By properly modeling the processing uncertainty in layer thickness, layer diameter, surface roughness and the cavity shape distortion, the fabrication imperfection effects on the cavity quality are simulated using a finite-difference time-domain method. It turns out that, the cavity quality is not significantly changing with the processing precision, indicating the robustness against the imperfection of the fabrication processing. Under thickness error of ±2 nm, diameter uncertainty of ±2%, surface roughness of ±2.5 nm, and sidewall inclination of 0.5°, which are all readily available in current material and device fabrication techniques, the cavity quality remains good enough to form highly efficient and coherent 1.55-㎛ single photon sources. It is thus implied that a quantum dot contained InGaAsP/InP-air-aperture micropillar cavity is prospectively a practical candidate for single photon sources applied in a fiber-based quantum information network.

Horseshoe Vortices variation around a Circular Cylinder with Upstream Cavity (상류 캐비티로 인한 실린더 주위의 유동장 변화)

  • Kang, Kyung-Jun;Kim, Dong-Beum;Song, Seung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2625-2630
    • /
    • 2008
  • Horseshoe vortices are formed at the junction of an object immersed in fluid-flow and endwall plate as a result of three-dimensional boundary layer separation. This study shows preliminary results of the kinematics of such horseshoe vortices around a circular cylinder with a cavity (slot) placed upstream to disturb the primary separation line. Through the cavity, no mass flow addition (blowing) or reduction (suction) is applied. The upstream cavity weakens the adverse pressure gradient before the cavity. With the upstream cavity, a single vortex is found to form immediately upstream of the cylinder whereas a typical two vortex system is observed in the absence of the cavity. Furthermore, the strength of the single vortex tends to be reduced, resulting from the interaction with the separated flow convecting directly towards the leading edge of the cylinder.

  • PDF

Frequency Characteristics of a Membrane-Cavity System and its Applications (박막-공동계의 주파수 특성과 응용)

  • 김양한;임종민
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1123-1130
    • /
    • 1999
  • A system which is composed of a membrane and an air cavity is studied. To analyze the low frequency characteristics of a single membrane-cavity system, a plane wave model is derived. The relations among system variables, such as tension, density and stiffness, are investigated. Absorption coefficient has a maximum value at a peak frequency. In addition, a membrane-cavity system absorbs the low frequency noise with a band around peak frequency. This band is primarily determined by damping effect of the system. Furthermore, a multiple membrane-cavity system is investigated by using the transfer matrix method. To show the practical applicability of the proposed model, extensive experiments were conducted. Results show that a multiple membrane-cavity system can have broader noise reduction in the low frequency range than single.

  • PDF

High Power and Single Mode Lasing Characteristics in Vertical Cavity Surface Emitting Laser by Varying Photonic Bandgap Structures (광 결정 구조 변수에 따른 고출력 단일모드 수직공진 표면발광 레이저의 발진 특성)

  • Lee, Jin-Woong;Hyun, Kyung-Sook;Shin, Hyun-Ee;Kim, Hee-Dae
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.6
    • /
    • pp.339-345
    • /
    • 2009
  • The high power and single mode vertical cavity surface emitting laser(VCSEL)s with photonic crystal structures have been proposed and fabricated by reducing substantially the hole numbers used in the photonic crystal structures. It is found that only six holes enable VCSELs to operate a single mode and the reliability can be enhanced by filling the holes with polyimide. The single mode lasing characteristics were analyzed by varying the oxide aperture and the hole diameter in photonic crystal structures. As a result, the single mode lasing can be stably obtained in the photonic crystal vertical cavity surface emitting lasers.

Injection Mold Technology of Protein Chip for Point-of-Care (현장진단용 단백질 칩 사출금형기술)

  • Lee, Sung-Hee;Ko, Young-Bae;Lee, Jong-Won;Jung, Hae-Chul;Park, Jae-Hyun;Lee, Ok-Sung
    • Design & Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.74-78
    • /
    • 2012
  • A multi-cavity injection mold system of protein chip for point-of-care with cavity temperature and pressure sensors was proposed in this work. In advance of manufacturing for the multi-cavity injection mold system, a single cavity injection mold system to mold protein chip was considered. Injection molding analysis for the presented system was performed to optimize the process of the molding and suggest guides to design. On the basis of the results for the single cavity system, a multi-cavity injection mold system for protein chip was analyzed, designed and manufactured with cavity temperature and pressure sensors. Results of balanced filling for protein chip models were obtained from the presented mold system.

  • PDF

Design of a Low-Profile, High-Gain Fabry-Perot Cavity Antenna for Ku-Band Applications

  • Nguyen, Truong Khang;Park, Ikmo
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.3
    • /
    • pp.306-313
    • /
    • 2014
  • A Fabry-Perot resonator cavity antenna for Ku-band application is presented in this paper. The Fabry-Perot cavity is formed by a ground plane and a frequency selective surface (FSS) made of a circular hole array. The cavity resonance is excited by a single-feed microstrip patch located inside the cavity. The measured results show that the proposed antenna has an impedance bandwidth of approximately 13% ($VSWR{\leq}2$) and a 3-dB gain bandwidth of approximately 7%. The antenna produces a maximum gain of 18.5 dBi and good radiation patterns over the entire 3-dB gain bandwidth. The antenna's very thin profile, high directivity, and single excitation feed make it promising for use in wireless and satellite communication applications in a Ku-band frequency.

Forced Resonant Type Cutoff Cavity-Backed Aperture Antennas Loaded with a Single External Reactance

  • Kim Ki-Chai;Hirasawa Kazuhiro
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.3
    • /
    • pp.105-111
    • /
    • 2005
  • This paper presents the basic characteristics of a cutoff cavity-backed aperture antenna with a feed post and a parasitic post inserted parallel to the aperture. It is shown that this type of antenna forcibly resonates the cutoff cavity by adding a single external reactance to the parasitic post. The Galerkin's method of moments is used to analyze integral equations for the unknown electric current on each post and the aperture electric field on the aperture. The value of an external reactance for forced resonance is analytically obtained by deriving a determining equation. Also the current distribution on each post, aperture electric field distributions, and the radiation patterns are discussed. The theoretical analysis is verified by the measured return loss and radiation patterns.

High Efficiency Slot Array Based on a Single Waveguide-Fed Cavity Backed Sub-Array (단일 도파관 급전된 캐비티 장착 서브어레이를 이용한 고효율 슬롯 배열 안테나)

  • Jung Kangjae;Lee Hak-Yong;Park Myun-Joo;Lee Byungje
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.12 s.91
    • /
    • pp.1141-1146
    • /
    • 2004
  • The antenna array for receiving satellite broadcasting of Koreasat III is proposed. A cavity-backed slot antenna array is proposed to reduce feed line loss, increase the radiation efficiency, and make the feed network simple. A sub-array consists of $2{\times}4$ slot elements backed by a single cavity. By proper choice of dimensions it is shown that the proposed antenna has characteristics of the high radiation efficiency and the broad frequency bandwidth. Antenna characteristics for the array antenna with 256 elements are measured in Ku-band. A single cavity backed-sub-array has the gain of 18 dEi. The gam of the total antenna array(256 elements) is Over 33 dEi.