DOI QR코드

DOI QR Code

Fabrication Tolerance of InGaAsP/InP-Air-Aperture Micropillar Cavities as 1.55-㎛ Quantum Dot Single-Photon Sources

  • Huang, Shuai (Southwest Institute of Technical Physics) ;
  • Xie, Xiumin (Southwest Institute of Technical Physics) ;
  • Xu, Qiang (Southwest Institute of Technical Physics) ;
  • Zhao, Xinhua (Southwest Institute of Technical Physics) ;
  • Deng, Guangwei (Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China) ;
  • Zhou, Qiang (Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China) ;
  • Wang, You (Southwest Institute of Technical Physics) ;
  • Song, Hai-Zhi (Southwest Institute of Technical Physics)
  • Received : 2020.07.13
  • Accepted : 2020.10.14
  • Published : 2020.12.25

Abstract

A practical single photon source for fiber-based quantum information processing is still lacking. As a possible 1.55-㎛ quantum-dot single photon source, an InGaAsP/InP-air-aperture micropillar cavity is investigated in terms of fabrication tolerance. By properly modeling the processing uncertainty in layer thickness, layer diameter, surface roughness and the cavity shape distortion, the fabrication imperfection effects on the cavity quality are simulated using a finite-difference time-domain method. It turns out that, the cavity quality is not significantly changing with the processing precision, indicating the robustness against the imperfection of the fabrication processing. Under thickness error of ±2 nm, diameter uncertainty of ±2%, surface roughness of ±2.5 nm, and sidewall inclination of 0.5°, which are all readily available in current material and device fabrication techniques, the cavity quality remains good enough to form highly efficient and coherent 1.55-㎛ single photon sources. It is thus implied that a quantum dot contained InGaAsP/InP-air-aperture micropillar cavity is prospectively a practical candidate for single photon sources applied in a fiber-based quantum information network.

Keywords

References

  1. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000). https://doi.org/10.1126/science.290.5500.2282
  2. C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, "Indistinguishable photons from a single-photon device," Nature 419, 594-597 (2002). https://doi.org/10.1038/nature01086
  3. O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaitre, and P. Senellart, "Bright solid-state sources of indistinguishable single photons," Nat. Commun. 4, 1425 (2013). https://doi.org/10.1038/ncomms2434
  4. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, "Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system," Nat. Phys. 6, 279-283 (2010). https://doi.org/10.1038/nphys1518
  5. M. Pelton, J. Vuckovic, G. S. Solomon, A. Scherer, and Y. Yamamoto, "Three-dimensionally confined modes in micro-post microcavities: quality factors and Purcell factors," IEEE J. Quantum Electron. 38, 170-177 (2002). https://doi.org/10.1109/3.980269
  6. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. M. Petroff, and J. Vuckovic, "Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade," Nat. Phys. 4, 859-863 (2008). https://doi.org/10.1038/nphys1078
  7. K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, and Y. Arakawa, "Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors," Sci. Rep. 5, 14383 (2015). https://doi.org/10.1038/srep14383
  8. C.-K. Lin, D. P. Bour, J. Zhu, W. H. Perez, M. H. Leary, A. Tandon, S. W. Corzine, and M. R. T. Tan, "High temperature continuous-wave operation of 1.3- and 1.55-㎛ VCSELs with InP/air-gap DBRs," IEEE J. Sel. Top. Quantum Electron. 9, 1415-1421 (2003). https://doi.org/10.1109/JSTQE.2003.820924
  9. D. Dalacu, D. Poitras, J. Lefebvre, P. J. Poole, G. C. Aers, and R. L. Williams, "InAs/InP quantum-dot pillar microcavities using SiO2/Ta2O5 Bragg reflectors with emission around 1.55 ㎛," Appl. Phys. Lett. 84, 3235 (2004). https://doi.org/10.1063/1.1728318
  10. H.-Z. Song, K. Takemoto, T. Miyazawa, M. Takatsu, S. Iwamoto, T. Yamamoto, and Y. Arakawa, "Design of Si/SiO2 micropillar cavities for Purcell-enhanced single photon emission at 1.55 ㎛ from InAs/InP quantum dots," Opt. Lett. 38, 3241-3244 (2013). https://doi.org/10.1364/OL.38.003241
  11. H.-Z. Song, K. Takemoto, T. Miyazawa, M. Takatsu, S. Iwamoto, M. Ekawa, T. Yamamoto, and Y. Arakawa, "High quality-factor Si/SiO2-InP hybrid micropillar cavities with submicrometer diameter for 1.55-㎛ telecommunication band," Opt. Express 23, 16264-16272 (2015). https://doi.org/10.1364/OE.23.016264
  12. H.-Z. Song, M. Hadi, Y. Zheng, B. Shen, L. Zhang, Z. Ren, R. Gao, and Z. M. Wang, "InGaAsP/InP nanocavity for single-photon source at 1.55-㎛ telecommunication band," Nanoscale Res. Lett. 12, 128 (2017). https://doi.org/10.1186/s11671-017-1898-y
  13. J. Gessler, T. Steinl, A. Mika, J. Fischer, G. Sek, J. Misiewicz, S. Hofling, C. Schneider, and M. Kamp, "Low dimensional GaAs/air vertical microcavity lasers," Appl. Phys. Lett. 104, 081113 (2014). https://doi.org/10.1063/1.4866805
  14. A. J. Shields, "Semiconductor quantum light sources," Nat. Photon. 1, 215-223 (2007). https://doi.org/10.1038/nphoton.2007.46
  15. A. Auffeves, D. Gerace, J.-M. Gerard, M. F. Santos, L. C. Andreani, and J.-P. Poizat, "Controlling the dynamics of a coupled atom-cavity system by pure dephasing," Phys. Rev. B 81, 245419 (2010). https://doi.org/10.1103/physrevb.81.245419
  16. T. Kuroda, Y. Sakuma, K. Sakoda, K. Takemoto, and T. Usuki, "Decoherence of single photons from an InAs/InP quantum dot emitting at a 1.3 ㎛ wavelength," Phys. Stat. Sol. C 6, 944-947 (2009).
  17. S. Bouchoule, G. Patriarche, S. Guilet, L. Gatilova, L. Largeau, and P. Chabert, "Sidewall passivation assisted by a silicon coverplate during Cl2-H2 and HBr inductively coupled plasma etching of InP for photonic devices," J. Vac. Sci. Technol. B 26, 666 (2008). https://doi.org/10.1116/1.2898455
  18. A. S. Kurochkin, I. I. Novikov, L. Ya Karachinsky, D. V. Denisov, A. G. Gladyshev, G. A. Gusev, A. N. Sofronov, A. A. Usikova, Yu M. Zadiranov, G. S. Sokolovsky, V. M. Ustinov, and A. Yu Egorov, "MBE growth and characterization of InAlAs/InGaAs 9 ㎛ range quantum cascade laser," J. Phys.: Conf. Ser. 917, 052016 (2017). https://doi.org/10.1088/1742-6596/917/5/052016
  19. T. Heuser, J. GroBe, A. Kaganskiy, D. Brunner, and S. Reitzenstein, "Fabrication of dense diameter-tuned quantum dot micropillar arrays for applications in photonic information processing," APL Photonics 3, 116103 (2018). https://doi.org/10.1063/1.5050669
  20. D. M. Beggs, L. O'Faolain, and T. F. Krauss, "Accurate determination of the functional hole size in photonic crystal slabs using optical methods," Photonics Nanostruc. 6, 213-218 (2008). https://doi.org/10.1016/j.photonics.2008.09.003
  21. J. S. Parker, E. J. Norberg, R. S. Guzzon, S. C. Nicholes, and L. A. Coldren, "High verticality InP/InGaAsP etching in Cl2/H2/Ar inductively coupled plasma for photonic integrated circuits," J. Vac. Sci. Technol. B 29, 011016 (2011).
  22. B. Rong, E. van der Drift, R. W. van der Heijden, and H. W. M. Salemink, "2D InP photonic crystal fabrication process development," Proc. SPIE 6327, 632715 (2006).