• Title/Summary/Keyword: Single Ground

Search Result 1,204, Processing Time 0.042 seconds

Time-History Analysis on Structure Dynamic Response for the SDOF System of Ground Vibration by the Newmark $\beta$ method (Newmark $\beta$ 방법에 의한 지반진동의 단자유도계 구조물 동적응답 시간이력 해석)

  • Kim, Jong-In;Kang, Seong-Seung
    • Tunnel and Underground Space
    • /
    • v.20 no.4
    • /
    • pp.292-298
    • /
    • 2010
  • The purpose of this study is to evaluate an effect of ground vibration caused by blasting on the concrete brick structure. For the purpose, dynamic response time-history of the structure assumed single degree of freedom (SDOF) system and vibration time-history directly measured from the structure were examined, using Newmark $\beta$ method based on data measured at ground. The time-history was interpreted from the measured data of ground and structure in single hole blasting. Vibration magnitude between ground vibration and structure in single hole blasting and 20 ms interval blasting was about three times and was shown larger vibration on the structure. By time-history analysis of structure dynamic response, the value was almost the same one with the data measured from the structure. It indicates that the vibration characteristics of structures may be predicted on the basis of the ground vibration data measured from the sub-ground of structure.

An Experimental Study on Variable-Speed Control of an Ground-Water Circulation Pump for a Ground Source Multi-Heat Pump System (주거용 건물 지열원 멀티 히트펌프시스템의 지열순환펌프 가변유량제어에 관한 실증연구)

  • Song, Suwon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.8
    • /
    • pp.443-449
    • /
    • 2013
  • The purpose of this study is to propose an enhanced variable-speed control method of ground-water circulation pumps using inlet and outlet ground-water temperature difference and analyze its effect for the ground source multi-heat pump system installed in a single-family house. As a result, it has shown to significantly reduce the electricity use of ground-water circulation pump and improve overall system Coefficient of Performance (COP) due to the proposed variable-speed control under partial load conditions after oversized and inefficient single-speed pump retrofit.

A Study on the Variation of Ground Water Temperature for Development of Ground Water Source Heat Pump (지하수 열원 열펌프 개발을 위한 지하수 온도의 변화 특성 연구)

  • Nam Hyun Kyu;Kim Youngil;Seo Joung Ah;Shin Younggy
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.1 no.2
    • /
    • pp.1-6
    • /
    • 2005
  • Ground water source heat pumps are clean, energy-efficient and environment-friendly systems for cooling and heating. Although the initial cost of ground water source heat pump system is higher than that of air source, it is now widely accepted as an economical system since the installation cost can be returned within a short period of time due to its high efficiency. In a ground water source heat pump system, the variation of the ground water temperature is an important factor that influences the system performance. In this study, variation of the ground water temperature of a single well system is studied experimentally for various operating conditions. When ground water flow exists in the underground, the returned water exchanges heat efficiently with the ground and the temperature of the ground water remains nearly constant. Hence the short circuit problem is minimized. If an active flow of ground water flow exists in the underground, a singe well heat pumps system will be free of short circuit problem and can operate with high performance.

  • PDF

A New 3D SVM Method under Single-Line-to-Ground Fault in Three Phase Four Wire Interlinking Converter (3상 4선식 인터링킹 컨버터의 1선 지락 사고 발생 시 3D SVM 기법)

  • An, Chang-Gyun;Choi, Bong-Yeon;Kim, Mi-na;Kang, Kyung-Min;Lee, Hoon;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.106-107
    • /
    • 2019
  • This paper propose a new 3D SVM method for three-phase four wire inverter for fault isolation at a single line ground fault. The available switching combination for isolation of a single line ground fault was analyzed. Using this method, voltage vector diagrams according to each switching combination were classified according to various ground fault situations, and 3D SVM method was performed by generating command for fault isolation. The proposed methods are mathematically analyzed and verified by PSIM simulation.

  • PDF

Installation Methodology of Parallel Ground Conductor and SVL for Single Point Bonding System on Underground Power Cable (지중 전력 선로 편단접지 시스템에서의 병행지선 및 SVL 설치방안)

  • Ha, C.W.
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.119-121
    • /
    • 2008
  • In underground power cable system, the device for limiting over-voltage is needed when transient over-voltage break out between sheath and ground. For this reason, the SVL(Sheath Voltage Limiter) has been applied on weak points. But the broken SVLs which are installed on the single point bonding system on underground cable are frequently found. In this paper, EMTP(Electromagnetic Transient Program) is utilized to analyze effects on the installation methodology of the parallel ground conductor and SVL for the single point bonding system on the underground cable. The result shows that the proposed installation methodology can be applied for single point bonding system and contribute for power system stabilization.

  • PDF

ANGLES ONLY ORBIT DETERMINATION FROM SINGLE TRACKING STATION

  • Lee Byoung-Sun;Hwang Yoola
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.304-307
    • /
    • 2004
  • Satellite orbit determination using angles only data from single ground station is carried out. The KOMPSAT-1 satellite mono-pulse angle tracking data from 9-meter S-band antenna at KARI site in Daejeon are used for the orbit determination. Various angle tracking arcs from one-day to five-day are processed and the orbit determination results are analyzed. Antenna pointing data are predicted based on the orbit determination results to check the possibility of re-acquisition and tracking of the satellite signal. Normal satellite mission operations including orbit determination, antenna prediction, satellite re-acquisition and automatic tracking from predicted antenna angle pointing data are concluded to be possible when three-day angle tracking data from single tracking station are used for the orbit determination.

  • PDF

A study on the effects of ground reinforcement on the behaviour of pre-existing piles affected by adjacent tunnelling (터널근접시공에 의한 기 존재하는 인접말뚝의 거동에 지반보강이 미치는 영향에 대한 연구)

  • Jeon, Young-Jin;Kim, Sung-Hee;Kim, Jeong-Sub;Lee, Cheol-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.389-407
    • /
    • 2017
  • In the current work, a series of three-dimensional finite element analysis was carried out to understand the behaviour of pile when the tunnel passes through the lower part of a single pile or group piles. At the current study, the numerical analysis analysed the results regarding the ground reinforcement condition between the tunnel and pile foundation. In the numerical modelling, several key issues, such as the pile settlements, the axial pile forces, the shear stresses and the total displacements near the tunnel have been thoroughly analysed. The pile head settlements of the single pile with the maximum level of reinforcement decreased by about 16% compared to the pile without ground reinforcement. Furthermore, the maximum axial force of the single pile with the maximum level of ground reinforcement experienced a 30% reduction compared to the pile without reinforcement. It has been found that the angle of ground reinforcement in the transverse direction affects the pile behaviour more so than the length of the ground reinforcement in the longitudinal direction. On the other hand, in the case of the pile group with the reinforced pile cap, the ground displacement near the pile tip appears to be similar to the corresponding ground displacement without reinforcement. However, it was found that the pile cap near the pile head greatly restrained the pile head movement and hence the axial pile force increased by about 2.5 times near the pile top compared to the piles in other analysis conditions. The behaviour of the single pile and group piles, depending on the amount of ground reinforcement, has been extensively examined and analysed by considering the key features in great details.

Unbalanced Characteristics of the Superconducting Fault Current Limiters with a Single Line-to-ground Fault (1선 지락사고에 대한 초전도한류기의 불평형 특성)

  • Choi, Hyo-Sang;Lee, Na-Young;Lee, Sang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.9
    • /
    • pp.851-855
    • /
    • 2005
  • We investigated the unbalanced characteristics of the superconducting fault current limiters (SFCLs) based on YBCO thin films with a single line-to-ground fault. When a single line-to-ground fault occurred, the short circuit current of a fault phase increased about 6 times of transport currents after the fault onset but was effectively limited to the designed current level within 2 ms by the resistance development of the SFCL. The fault currents of the sound phases almost did not change because of their direct grounding system. The unbalanced rates of a fault phase were distributed from 6.4 to 1.4. It was found that the unbalanced rates of currents were noticeably improved within one cycle after the fault onset. We calculated the zero phase currents for a single line-to-ground fault using the balanced component analysis. The positive sequence resistance was reduced remarkably right after the fault onset but eventually approached the balanced positive resistance component prior to the system fault. This means that the system reaches almost the three-phase balanced state in about 60 ms after the fault onset at the three-phase system.

Tensile Strength Variation of Binary Tablets Produced by Planetary Ball Milling (유성볼밀링으로 제조한 2성분 정제의 인장강도 변화)

  • Sim, Chol-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Planetary ball mill was used to decrease and control the particle size of excipients. The effects of the weight of sample and the revolution number of mill, and grinding time on the particle size of the ground sample were analyzed by response surface methodology. The optimum conditions for the milling of microcrystalline cellulose were 38.82 g of the weight of sample and 259 rpm of the revolution number of mill, and 45 minutes of grinding time. The predicted value of the particle size at the these conditions was $19.02{\mu}m$, of which the experimental value at the similar conditions was $18.68{\mu}m$. The tensile strength of tablets of single-component powders, such as microcrystalline cellulose, hydroxypropylmethyl cellulose and starch, binary mixtures and ground binary mixtures of these powder were measured at various relative densities. It was found that the logarithm of the tensile strength of the tablets was proportional to the relative density. A simple model, based upon Ryshkewitch-Duckworth equation that was originally proposed for porous materials, has been developed in order to predict the relationship between the tensile strength and relative density of ground binary tablets based on the properties of the constituent single-component powders. The validity of the model has been verified with experimental results for ground binary mixtures. It has demonstrated that this model can well predict the tensile strength of ground binary mixtures based upon the properties of single-component powders, such as true density, and the compositions. When the tensile strength of the mixture of microcrystalline cellulose hydroxypropylmethyl cellulose (90:10) and the ground mixture of them were compared, the tensile strength of the ground mixture decreased widely from 45.3 to 5.6% compared to the mixture in case the relative density of tablets was in the range of $0.7{\sim}0.9$. When the tensile strength of the mixture of microcrystalline cellulose starch (80:20) and the ground mixture of them were compared, the tensile strength of the ground mixture decreased widely from 31.0 to 11.6% compared to the mixture in case the relative density of tablets was in the range of $0.7{\sim}0.9$.

The Calculation Method of Apparent Earth Pressure in Multi-Layered Ground with Clay and Sand (점토와 모래가 포함된 다층지반의 경험토압 산정방법에 관한 연구)

  • Kim, Byung-Il;Hong, Kang-Han;Kim, Jin-Hae;Han, Sang-Jae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.1
    • /
    • pp.21-34
    • /
    • 2021
  • In this study, to solve a problem that cannot consider the contribution effect of each layers when the apparent earth pressure in homogeneous ground is applied to multi-layered ground, the measured earth pressures at World were investigated and analyzed. It has been confirmed that the apparent earth pressure in mulit-layered ground is different from single ground and that the extra layer's contribution to the earth pressure cannot be considered. The conventional method of calculating the apparent earth pressure for single ground was extended to mulit-layered ground, and proposed and verified the applicable method for both single and mulit-layered ground. The proposed methods predicted the earth pressure closer to the measurements at the excavation depth of 0.1Z/H or below, and the prediction reliability was evaluated to be better than the conventional method. Among the proposed methods, the method of considering the area ratio of the active failure has a geotechnical validity and predicts the most similar results to the actual earth pressure. To confirm the applicability of the proposed methods, it was presented by comparing and analyzing the results of the proposed methods with the conventional method for the actual case.