• Title/Summary/Keyword: Single Droplet

검색결과 190건 처리시간 0.026초

Twin Spray Characteristics Between Two Impinging F-O-O-F Type Injectors

  • Kang, Shin-Jae;Lee, Eun-Sang;Kwon, Ki-Chul;Oh, Je-Ha;Yu, Myoung-Jong
    • Journal of Mechanical Science and Technology
    • /
    • 제16권5호
    • /
    • pp.732-742
    • /
    • 2002
  • This paper presents twin spray characteristics of two impinging F-O-O-F type injectors in which fuel and oxidizer impinge on each other to atomize under the various conditions. The droplet size and velocity in the impinging spray flow field were measured using PDPA. The droplet size and velocity were investigated at the mixture ratios of 1.5, 2.0, 2.47 and 3.0 for four injectors in which two single F-O-O-F injectors were arranged at the intervals of 20.8, 31.2, 41.6 and 62.4mm respectively. In general, the arithmetic mean diameter, SMD and standard deviation of droplet size in the interaction area (X=0 and Y=0mm) were smaller, while the axial velocity in the interaction area was slightly higher. An empirical correlation is obtained for the (D$\_$10/)$\_$D//(D$\_$10/)$\_$c/ value under the assumptions of two identical droplets and these with different size and velocity. The droplets with low Weber numbers below 40 have possibility to coalesce, while those over 40 tend to disintegrate after impingement in the interaction area.

충돌형 F-O-O-F 인젝터의 이중분무 중첩영역에서의 분무특성에 관한 연구 (Spray Characteristics in the cross region of twin spray between impinging F-O-O-F type injectors)

  • 권기철;이은상;강신재;노병준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.758-763
    • /
    • 2001
  • This paper presents twin spray characteristics of two impinging F-O-O-F type injectors in which fuel and oxidizer impinge on each other to atomize under the various conditions. The droplet size and velocity in the impinging spray flow field were measured using a PDPA. The droplet size and velocity were investigated at mixture ratios of 1.5, 2.0, 2.47 and 3.0 for four injectors in which two single F-O-O-F injectors were arranged at intervals of 20.8, 31.2, 41.6 and 62.4mm respectively. In general, the arithmetic mean diameter, SMD and standard deviation of droplet size in the interaction area (X=0 and Y=0mm) were smaller. The axial velocity in the interaction area was slightly higher. Considering the behavior of impinged droplets using the We number calculated by using the axial velocity instead of the relative velocity in line C in Fig. 1(b) for four injectors, it is consumed that the We number over 500 had the possibility to disintegrate, and the We number below 500 had it to cohere after impingement of twin spray. The results of this study can be used for the design of a nozzle for liquid propellant rockets.

  • PDF

Heat Transfer Correlation to Predict the Evaporation of a Water Droplet in Superheated Steam during Reflood Phase of a LOCA

  • Kim, Yoo;Ban, Chang-Hwan
    • 에너지공학
    • /
    • 제9권3호
    • /
    • pp.261-268
    • /
    • 2000
  • A heat transfer correlation to predict the vaporization of a water droplet in highly superheated steam during a loss-of-coolant accident(LOCA) of a nuclear power plant is provided. Vaporization of liquid fuel or water droplets in superheated air or steam and subsequent interface heat transfer between a liquid droplet and superheated gas is typically correlated by way of a Nusselt number as a function of Reynolds number, Prantl number, and in some cases including mass transfer number. Presently available correlations and experimental data of the evaporation of liquid droplets in air or steam are analyzed and a new Nusselt number correlation is proposed taking Schmidt number into consideration in order to account for binary diffusion of the vapor as well, Nu$\_$f/(1+B)$\^$0.7/=2+0.53Sc$\_$f/$\^$-1/5/Re$\_$M/$\^$$\sfrac{1}{2}$/Pr$\_$f/$\^$$\sfrac{1}{3}$/ for which properties are evaluated at film condition except the density of Reynolds number evaluated at ambient condition. Diverse correlations for various combinations of liquid and gas species are put into single equation. The blowing correction factor of (1+B)$\^$0.7/ is confirmed appropriate, and a criterion to distinguish so-called high- and low-temperature condition of ambient gas is set forth.

  • PDF

노즐의 스월러각과 형상비가 이중분무의 평균속도와 입경의 크기에 미치는 영향 (Effect of the Swirler Angle and Aspect Ratio of Nozzle on the Mean Velocity and SMD of Twin Sprays)

  • 김영진;정지원;최경민;김덕줄
    • 대한기계학회논문집B
    • /
    • 제28권11호
    • /
    • pp.1459-1466
    • /
    • 2004
  • The purpose of this study is to investigate the effect of swirler angle and the aspect ratio of swirl chamber of nozzle on the characteristics of single and twin spray. The characteristics of sprays have been investigated by measuring the spray angle, droplet size and velocity. Visualization of spray was conducted to obtain the spray angle and breakup process. The spray characteristics such as droplet size and velocity were measured by Phase Doppler Anemometry(PDA). It was found that the spray angle was increased with increasing the swirler angle. For both sprays, the axial velocity and SMD were decreased with increasing the swirler angle. It was also shown that the axial velocity and SMD were decreased with increasing the aspect ratio of swirl chamber, but for the twin spray, the axial velocity and SMD were not influenced significantly by the changing the aspect ratio of swirl chamber. The effect of swirler angle on the spray characteristics was greater than the aspect ratio of swirl chamber for single spray. The nozzle pitch was one of the important factors affecting the spray characteristics of twin spray.

노즐의 내부형상 및 스월러 베인각의 변화가 선단거리에 따른 분무특성에 미치는 영향 (Effect of Internal Geometry and Swirler Vane Angle of Nozzle on Spray Characteristics with Distance from Nozzle Tip)

  • 정홍철;최경민;김덕줄
    • 한국분무공학회지
    • /
    • 제10권4호
    • /
    • pp.1-7
    • /
    • 2005
  • The purpose of this study is to investigate the effect of swirler vane angle and the aspect ratio of swirl chamber of nozzle on the characteristics of single spray. The characteristics of sprat's have been investigated by measuring the spray angle, droplet size and velocity Visualization of spray was conducted to obtain the spray angle and breakup process. The spray characteristics such as droplet size and velocity were measured by Phase Doppler Anemometry(PDA). It was found that the spray angle was increased with increasing the swirler angle. For both sprays, the axial velocity and SMD were decreased with increasing the swirler vane angle. It was also shown that the axial velocity and SMD were decreased with increasing the aspect ratio of swirl chamber The effect of vane angle un the spray characteristics was greater than the aspect ratio of swirl chamber for single spray.

  • PDF

Interpretation of the lattice-shaped mura defects in thin-film-transistor liquid crystal displays

  • Woo, B.C.;Han, S.Y.
    • Journal of Information Display
    • /
    • 제12권3호
    • /
    • pp.121-124
    • /
    • 2011
  • The mechanism for lattice-shaped mura defects was proposed by characterizing the electro-optic properties of liquid crystal (LC), which showed different transmission properties between the normal and mura defect areas. An increase in the mura defect rate was observed when the dotted LC in the one drop filling (ODF) was exposed for a longer time. The dotted LC droplet at the edge evaporated more rapidly than that in the center. This resulted in a higher concentration of polar singles at the edge of the dotted LC droplet, leading to a higher ${\Delta}n$ value and higher transmittance. This implies that the reductio of the exposure time of the dotted LC to air plays a critical role in decreasing the occurrence of lattice-shaped mura defects in ODF.

Modeling of non-isothermal CO2 particle leaked from pressurized source: II. Behavior of single droplet

  • Chang, Daejun;Han, Sang Heon;Yang, Kyung-Won
    • Ocean Systems Engineering
    • /
    • 제2권1호
    • /
    • pp.33-47
    • /
    • 2012
  • This study revealed the behavior of droplets formed through leak process in deep water. There was a threshold depth named the universal attraction depth (UAD). Droplets rose upward in the zone below the UAD called the rising zone, and settled down in the zone above the UAD called the settling zone. Three mass loss modes were identified and formulated: dissolution induced by mass transfer, condensation by heat transfer and phase separation by pressure decrease. The first two were active for the settling zone, and all the three were effective for the rising zone. In consequence, the life time of the droplets in the rising zone was far shorter than that of the droplets in the settling zone.

벽면에 충돌하는 분무의 미립화에 관한 수치적 모델 (A Numerical Model for Atomization of an Impinging Spray on the Wall)

  • 조미옥;허강열
    • 한국분무공학회지
    • /
    • 제2권1호
    • /
    • pp.36-45
    • /
    • 1997
  • A spray-wall impingement model for fuel sprays is proposed and implemented as a module into the KIVA-POSTECH code. The model is based on the single droplet experiments. The droplet behaviors after impingement are determined from experimental correlations. Different behaviors of impinged droplets depend on the wall temperature and the critical temperature of the fuel. Fuel film formation is taken into account so that the model can be applicable to any wall temperature and injection conditions. Computational results on a normal and on inclined wall are in good agreement for the spray shape and penetration. More validation against experiments and development of the heat transfer model are needed for further improvement.

  • PDF

燃料噴霧特性 에 관한 硏究 (A Study on the Characteristics of Fuel Spray)

  • 진호근;이창식;서정일
    • 대한기계학회논문집
    • /
    • 제6권3호
    • /
    • pp.256-260
    • /
    • 1982
  • This paper presents the characteristics of fuel spray in a diesel engine. In this paper, in order to obtain spray droplet size in a diesel engine, water was injected into the cylinder at room temperature and pressure by injection system. Spray droplet size was measured by liquid immersion technique with a lubricant used as an immersion liquid for spray water from injection nozzle. In this experiment, single hole type throttle nozzle are used at same operating conditions, which included opening pressure of nozzle, fuel delivery, and injection speed. Sauter mean diameter decrease with the increase of injection pressure and decrease in injection nozzle diameter. The rate of spray penetration increased with increasing injection pressure and diameter of injection nozzle at the constant spray conditions.

Micro-PIXE as a Technique for Multi-elemental Detection and Localization in Various Atmospheric Environmental Samples

  • Ma, Chang-Jin;Choi, Sung-Boo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제24권E1호
    • /
    • pp.54-62
    • /
    • 2008
  • Microbeam PIXE, often called micro-PIXE, is one of powerful tools for analyzing a wide range of elements for various samples. Moreover, it has important applications of interest to the atmospheric science. In the present study, a qualitative elemental imagination for various atmospheric environmental species was attempted using micro-PIXE. Especially, in combination with a novel individual droplet collection method and the micro-PIXE analytical technique, the chemical specification of various individual atmospheric samples could be carried out. Here, we briefly introduce the results of an application of micro-PIXE to the study of atmospheric environment. The detailed spatial resolution of multiple elements for various samples like individual ambient particles, individual raindrops, individual fog droplets, and individual snow crystals could be successfully achieved by scanning 2.6 MeV $H^+$ micro beam ($1{\sim}2{\mu}m$) accelerated by 3 MeV single-end accelerator.