• Title/Summary/Keyword: Single Die

Search Result 197, Processing Time 0.018 seconds

A 1280-RGB $\times$ 800-Dot Driver based on 1:12 MUX for 16M-Color LTPS TFT-LCD Displays (16M-Color LTPS TFT-LCD 디스플레이 응용을 위한 1:12 MUX 기반의 1280-RGB $\times$ 800-Dot 드라이버)

  • Kim, Cha-Dong;Han, Jae-Yeol;Kim, Yong-Woo;Song, Nam-Jin;Ha, Min-Woo;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.1
    • /
    • pp.98-106
    • /
    • 2009
  • This work proposes a 1280-RGB $\times$ 800-Dot 70.78mW 0.l3um CMOS LCD driver IC (LDI) for high-performance 16M-color low temperature poly silicon (LTPS) thin film transistor liquid crystal display (TFT-LCD) systems such as ultra mobile PC (UMPC) and mobile applications simultaneously requiring high resolution, low power, and small size at high speed. The proposed LDI optimizes power consumption and chip area at high resolution based on a resistor-string based architecture. The single column driver employing a 1:12 MUX architecture drives 12 channels simultaneously to minimize chip area. The implemented class-AB amplifier achieves a rail-to-rail operation with high gain and low power while minimizing the effect of offset and output deviations for high definition. The supply- and temperature-insensitive current reference is implemented on chip with a small number of MOS transistors. A slew enhancement technique applicable to next-generation source drivers, not implemented on this prototype chip, is proposed to reduce power consumption further. The prototype LDI implemented in a 0.13um CMOS technology demonstrates a measured settling time of source driver amplifiers within 1.016us and 1.072us during high-to-low and low-to-high transitions, respectively. The output voltage of source drivers shows a maximum deviation of 11mV. The LDI with an active die area of $12,203um{\times}1500um$ consumes 70.78mW at 1.5V/5.5V.

A 10b 25MS/s $0.8mm^2$ 4.8mW 0.13um CMOS ADC for Digital Multimedia Broadcasting applications (DMB 응용을 위한 10b 25MS/s $0.8mm^2$ 4.8mW 0.13um CMOS A/D 변환기)

  • Cho, Young-Jae;Kim, Yong-Woo;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.37-47
    • /
    • 2006
  • This work proposes a 10b 25MS/s $0.8mm^2$ 4.8mW 0.13um CMOS A/D Converter (ADC) for high-performance wireless communication systems such as DVB, DAB and DMB simultaneously requiring low voltage, low power, and small area. A two-stage pipeline architecture minimizes the overall chip area and power dissipation of the proposed ADC at the target resolution and sampling rate while switched-bias power reduction techniques reduce the power consumption of analog amplifiers. A low-power sample-and-hold amplifier maintains 10b resolution for input frequencies up to 60MHz based on a single-stage amplifier and nominal CMOS sampling switches using low threshold-voltage transistors. A signal insensitive 3-D fully symmetric layout reduces the capacitor and device mismatch of a multiplying D/A converter while low-noise reference currents and voltages are implemented on chip with optional off-chip voltage references. The employed down-sampling clock signal selects the sampling rate of 25MS/s or 10MS/s with a reduced power depending on applications. The prototype ADC in a 0.13um 1P8M CMOS technology demonstrates the measured DNL and INL within 0.42LSB and 0.91LSB and shows a maximum SNDR and SFDR of 56dB and 65dB at all sampling frequencies up to 2SMS/s, respectively. The ADC with an active die area if $0.8mm^2$ consumes 4.8mW at 25MS/s and 2.4mW at 10MS/s at a 1.2V supply.

Mammalian Cloning by Nuclear transfer, Stem Cell, and Enzyme Telomerase (핵치환에 의한 cloning, stem cell, 그리고 효소 telomerase)

  • 한창열
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.6
    • /
    • pp.423-428
    • /
    • 2000
  • In 1997 when cloned sheep Dolly and soon after Polly were born, it had become head-line news because in the former the nucleus that gave rise to the lamb came from cells of six-year-old adult sheep and in the latter case a foreign gene was inserted into the donor nucleus to make the cloned sheep produce human protein, factor IX, in e milk. In the last few years, once the realm of science fiction, cloned mammals especially in livestock have become almost commonplace. What the press accounts often fail to convey, however, is that behind every success lie hundreds of failures. Many of the nuclear-transferred egg cells fail to undergo normal cell divisions. Even when an embryo does successfully implant in the womb, pregnancy often ends in miscarriage. A significant fraction of the animals that are born die shortly after birth and some of those that survived have serious developmental abnormalities. Efficiency remains at less than one % out of some hundred attempts to clone an animal. These facts show that something is fundamentally wrong and enormous hurdles must be overcome before cloning becomes practical. Cloning researchers now tent to put aside their effort to create live animals in order to probe the fundamental questions on cell biology including stem cells, the questions of whether the hereditary material in the nucleus of each cell remains intact throughout development, and how transferred nucleus is reprogrammed exactly like the zygotic nucleus. Stem cells are defined as those cells which can divide to produce a daughter cell like themselves (self-renewal) as well as a daughter cell that will give rise to specific differentiated cells (cell-differentiation). Multicellular organisms are formed from a single totipotent stem cell commonly called fertilized egg or zygote. As this cell and its progeny undergo cell divisions the potency of the stem cells in each tissue and organ become gradually restricted in the order of totipotent, pluripotent, and multipotent. The differentiation potential of multipotent stem cells in each tissue has been thought to be limited to cell lineages present in the organ from which they were derived. Recent studies, however, revealed that multipotent stem cells derived from adult tissues have much wider differentiation potential than was previously thought. These cells can differentiate into developmentally unrelated cell types, such as nerve stem cell into blood cells or muscle stem cell into brain cells. Neural stem cells isolated from the adult forebrain were recently shown to be capable of repopulating the hematopoietic system and produce blood cells in irradiated condition. In plants although the term$\boxDr$ stem cell$\boxUl$is not used, some cells in the second layer of tunica at the apical meristem of shoot, some nucellar cells surrounding the embryo sac, and initial cells of adventive buds are considered to be equivalent to the totipotent stem cells of mammals. The telomere ends of linear eukaryotic chromosomes cannot be replicated because the RNA primer at the end of a completed lagging strand cannot be replaced with DNA, causing 5' end gap. A chromosome would be shortened by the length of RNA primer with every cycle of DNA replication and cell division. Essential genes located near the ends of chromosomes would inevitably be deleted by end-shortening, thereby killing the descendants of the original cells. Telomeric DNA has an unusual sequence consisting of up to 1,000 or more tandem repeat of a simple sequence. For example, chromosome of mammal including human has the repeating telomeric sequence of TTAGGG and that of higher plant is TTTAGGG. This non-genic tandem repeat prevents the death of cell despite the continued shortening of chromosome length. In contrast with the somatic cells germ line cells have the mechanism to fill-up the 5' end gap of telomere, thus maintaining the original length of chromosome. Cem line cells exhibit active enzyme telomerase which functions to maintain the stable length of telomere. Some of the cloned animals are reported prematurely getting old. It has to be ascertained whether the multipotent stem cells in the tissues of adult mammals have the original telomeres or shortened telomeres.

  • PDF

A Non-Calibrated 2x Interleaved 10b 120MS/s Pipeline SAR ADC with Minimized Channel Offset Mismatch (보정기법 없이 채널 간 오프셋 부정합을 최소화한 2x Interleaved 10비트 120MS/s 파이프라인 SAR ADC)

  • Cho, Young-Sae;Shim, Hyun-Sun;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.9
    • /
    • pp.63-73
    • /
    • 2015
  • This work proposes a 2-channel time-interleaved (T-I) 10b 120MS/s pipeline SAR ADC minimizing offset mismatch between channels without any calibration scheme. The proposed ADC employs a 2-channel SAR and T-I topology based on a 2-step pipeline ADC with 4b and 7b in the first and second stage for high conversion rate and low power consumption. Analog circuits such as comparator and residue amplifier are shared between channels to minimize power consumption, chip area, and offset mismatch which limits the ADC linearity in the conventional T-I architecture, without any calibration scheme. The TSPC D flip-flop with a short propagation delay and a small number of transistors is used in the SAR logic instead of the conventional static D flip-flop to achieve high-speed SAR operation as well as low power consumption and chip area. Three separate reference voltage drivers for 4b SAR, 7b SAR circuits and a single residue amplifier prevent undesirable disturbance among the reference voltages due to each different switching operation and minimize gain mismatch between channels. High-frequency clocks with a controllable duty cycle are generated on chip to eliminate the need of external complicated high-frequency clocks for SAR operation. The prototype ADC in a 45nm CMOS technology demonstrates a measured DNL and INL within 0.69LSB and 0.77LSB, with a maximum SNDR and SFDR of 50.9dB and 59.7dB at 120MS/s, respectively. The proposed ADC occupies an active die area of 0.36mm2 and consumes 8.8mW at a 1.1V supply voltage.

Effect of Various Mixing Ratio of Non-glutinous and Glutinous Rice on Physical and Rheological Properties of Extrudate (멥쌀과 찹쌀의 혼합비율별 압출성형물의 물리적 성질 및 유동특성)

  • Kum, Jun-Seok;Kwon, Sang-Oh;Lee, Hyun-Yu;Lee, Sang-Hyo;Jung, Jin-Hyub;Kim, Jun-Pyong
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.442-447
    • /
    • 1994
  • Effect of different mixing ratio of non-glutinous and glutinous rice on physical and rheological properties of extrudate prepared in a single screw extruder were examined. The extrusion conditions in term of screw speeds, moisture content and die temperature were 258 rpm, 18% and $120^{\circ}C$, respectively. The resisdence time distribution of the most of materials were within 30 second and small portion of them went up to 80 second. The expansion ratio was the highest value (2.93) for 70% of glutinous rice in the mixture, while the lowest value for 100% of non-glutinous rice. Breaking strength was in the range between 1,051g and 1,117g for $10{\sim}20%$ of glutinous rice in the mixture, while the lowest value (737g) for 80%r of glutinous rice. As the amount of glutinous rice increased, L and a values were increased and b value was decreased. The uncooked cold paste viscosity had 400 B.U. for 100% non-glutinous rice , while no peak for the 100% glutinous rice. As the amount of glutinous rice increased up to 100%, the water absorption index (WAI) was decreased, while water solubility index (WSI) was increased. The rheological properties of extrudate were accounted by the law of Oswald. The flow behavior index of extrudate was less than 1.0, which showed pseudoplastic behavior. Yield stress was the highest value for 20% of glutinous rice in the mixture and the lowest value for $80{\sim}100%$ of glutinous; rice. Number of air cell was between 128 and 159 for $80{\sim}100%$ of glutinous rice in the mixture, while $81{\sim}84%$ for $0{\sim}20%$ of glutinous rice. The degree of shapefact was increased more when the mixtures of glutinous and non-glutinous rice was used than when glutinous or non-glutinous rice was only used.

  • PDF

A 13b 100MS/s 0.70㎟ 45nm CMOS ADC for IF-Domain Signal Processing Systems (IF 대역 신호처리 시스템 응용을 위한 13비트 100MS/s 0.70㎟ 45nm CMOS ADC)

  • Park, Jun-Sang;An, Tai-Ji;Ahn, Gil-Cho;Lee, Mun-Kyo;Go, Min-Ho;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.46-55
    • /
    • 2016
  • This work proposes a 13b 100MS/s 45nm CMOS ADC with a high dynamic performance for IF-domain high-speed signal processing systems based on a four-step pipeline architecture to optimize operating specifications. The SHA employs a wideband high-speed sampling network properly to process high-frequency input signals exceeding a sampling frequency. The SHA and MDACs adopt a two-stage amplifier with a gain-boosting technique to obtain the required high DC gain and the wide signal-swing range, while the amplifier and bias circuits use the same unit-size devices repeatedly to minimize device mismatch. Furthermore, a separate analog power supply voltage for on-chip current and voltage references minimizes performance degradation caused by the undesired noise and interference from adjacent functional blocks during high-speed operation. The proposed ADC occupies an active die area of $0.70mm^2$, based on various process-insensitive layout techniques to minimize the physical process imperfection effects. The prototype ADC in a 45nm CMOS demonstrates a measured DNL and INL within 0.77LSB and 1.57LSB, with a maximum SNDR and SFDR of 64.2dB and 78.4dB at 100MS/s, respectively. The ADC is implemented with long-channel devices rather than minimum channel-length devices available in this CMOS technology to process a wide input range of $2.0V_{PP}$ for the required system and to obtain a high dynamic performance at IF-domain input signal bands. The ADC consumes 425.0mW with a single analog voltage of 2.5V and two digital voltages of 2.5V and 1.1V.

Traditional Performing Arts and Nomadic Entertaining Troupes Depicted in "Nectar of Immortality" (감로탱에 묘사된 전통연희와 유랑예인집단)

  • Jeon, Kyung-Wook
    • (The) Research of the performance art and culture
    • /
    • no.20
    • /
    • pp.163-204
    • /
    • 2010
  • "Nectar of Immortality", also known as Suryukwha, is a painting which is hung on the wall during Suryukjae, a rite to console the spirits residing on both land and water. The Suryukwha at Bonyung Temple in the Ming Dynasty consisted of 139 scrolls depicting separate scenes. In Korea, however, Nectar of Immortality combines all the scenes into one large painting. The lower part of Nectar of Immortality describes pain, disasters, and the frailty of human life in this world. This is intended to inspire people to embrace Buddhism and be delivered from their worldly existence. However, it reflects the social realities of that time as well. The scenes at the bottom of the painting of nomadic troupes of entertainers and their performances are part of this reflection. In this section, various scenes of traditional Korean performance are illustrated, such as double and single tightrope walking, Sotdaetagi (performing atop a pole), Ssangjulbaegi (one form of Sotdaetagi), tumbling, bell juggling, mask dramas, dish spinning, puppet shows, the dance of Sadang, and sword dancing. Among these performances, some, such as Sotdaetagi, Ssangjulbaegi, double tightrope walking, bell juggling and sword dancing (Punggakjaengipae), have since ceased to exist. The troupes of entertainers depicted in Nectar of Immortality are Sadangpae, Namsadangpae, Sotdaejaengipae, Choranipae, Punggakjaenipae, Gutjungpae, and circus troupes. When, after itinerant lives, these entertainers die, they become forlorn wandering spirits with no descendants to perform their memorial services. The entertainers in the performance scenes are the embodiment of souls who are the subjects of salvation through Suryukjae. Among these entertainers, Sotdaejaengipae, Sadangpae, Choranipae, Punggakjaenipae and Gutjungpae no longer exist. In sum, Nectar of Immortality provides insight into the vanished content of numerous historic forms of performance and the activities of nomadic troupes of entertainers.