• Title/Summary/Keyword: Single Bubble

Search Result 144, Processing Time 0.024 seconds

Effect of channel hight on Bubble growth under Saturated Nucleate Pool Boiling for Various Channel Height using Heater with Artificial Cavity (인공 캐비티를 가진 히터를 이용한 가열면의 채널 높이가 풀비등시 기포성장에 미치는 영향에 대한 기초연구)

  • Kim, Jeong-Bae;Park, Moon-Hee;Jeon, Woo-Cheol
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.5
    • /
    • pp.93-99
    • /
    • 2010
  • Nucleate pool boiling experiments with constant heat flux condition were performed using pure R113 for various channel heights under saturated pool condition. A circular heater of 1mm diameter, with artificial cavity in the center, fabricated using MEMS technique and the high-speed controller were used to maintain the constant heat flux. Images of bubble growth were taken at 5,000 frames per second using a high-speed CCD camera. The bubble geometry was obtained from the captured bubble images. The effects of channel height on the bubble growth behaviors were analyzed as dimensional scales for the initial and thermal growth regions. The parameters for the bubble growth behaviors were bubble radius, bubble growth rate, and bubble shapes. These phenomena require further analysis for various surface angles, but this study will provide good experimental data with constant heat flux boundary condition for such works.

A Simple Parameterization for the Rising Velocity of Bubbles in a Liquid Pool

  • Park, Sung Hoon;Park, Changhwan;Lee, JinYong;Lee, Byungchul
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.692-699
    • /
    • 2017
  • The determination of the shape and rising velocity of gas bubbles in a liquid pool is of great importance in analyzing the radioactive aerosol emissions from nuclear power plant accidents in terms of the fission product release rate and the pool scrubbing efficiency of radioactive aerosols. This article suggests a simple parameterization for the gas bubble rising velocity as a function of the volume-equivalent bubble diameter; this parameterization does not require prior knowledge of bubble shape. This is more convenient than previously suggested parameterizations because it is given as a single explicit formula. It is also shown that a bubble shape diagram, which is very similar to the Grace's diagram, can be easily generated using the parameterization suggested in this article. Furthermore, the boundaries among the three bubble shape regimes in the $E_o-R_e$ plane and the condition for the bypass of the spheroidal regime can be delineated directly from the parameterization formula. Therefore, the parameterization suggested in this article appears to be useful not only in easily determining the bubble rising velocity (e.g., in postulated severe accident analysis codes) but also in understanding the trend of bubble shape change due to bubble growth.

New Bubble Size Distribution Model for Cryogenic High-speed Cavitating Flow

  • Ito, Yutaka;Tomitaka, Kazuhiro;Nagasaki, Takao
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.700-710
    • /
    • 2008
  • A Bubble size distribution model has been developed for the numerical simulation of cryogenic high-speed cavitating flow of the turbo-pumps in the liquid fuel rocket engine. The new model is based on the previous one proposed by the authors, in which the bubble number density was solved as a function of bubble size at each grid point of the calculation domain by means of Eulerian framework with respect to the bubble size coordinate. In the previous model, the growth/decay of bubbles due to pressure difference between bubble and liquid was solved exactly based on Rayleigh-Plesset equation. However, the unsteady heat transfer between liquid and bubble, which controls the evaporation/condensation rate, was approximated by a theoretical solution of unsteady heat conduction under a constant temperature difference. In the present study, the unsteady temperature field in the liquid around a bubble is also solved exactly in order to establish an accurate and efficient numerical simulation code for cavitating flows. The growth/decay of a single bubble and growth of bubbles with nucleation were successfully simulated by the proposed model.

  • PDF

Using a Lagrangian-Lagrangian approach for studying flow behavior inside a bubble column

  • YoungWoo Son;Cheol-O Ahn;SangHwan Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4395-4407
    • /
    • 2023
  • Bubble columns are widely encountered in several industries, especially in the field of nuclear safety. The Eulerian-Eulerian and the Eulerian-Lagrangian methods are commonly used to investigate bubble columns. Eulerian approaches require additional tasks such as strict volume conservation at the interface and a predefined well-structured grid. In contrast, the Lagrangian approach can be easily implemented. Hence, we introduce a fully Lagrangian approach for the simulation of bubble columns using the discrete bubble model (DBM) and moving particle semi-implicit (MPS) methods. Additionally, we propose a rigorous method to estimate the volume fraction accurately, and verified it through experimental data and analytical results. The MPS method was compared with the experimental data of Dambreak. The DBM was verified by analyzing the terminal velocity of a single bubble for each bubble size. It agreed with the analytical results for each of the four drag correlations. Additionally, the improved method for calculating the volume fraction showed agreement with the Ergun equation for the pressure drop in a packed bed. The implemented MPS-DBM was used to simulate the bubble column, and the results were compared with the experimental results. We demonstrated that the MPS-DBM was in quantitative agreement with the experimental data.

Wall Superheat Effect on Single Bubble Growth During Nucleate Boiling at Saturated Pool (풀 핵비등시 단일 기포 성장에 대한 벽면 과열도의 영향에 관한 연구)

  • Kim Jeong bae;Lee Han Choon;Kim Moo Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.633-642
    • /
    • 2005
  • Nucleate pool boiling experiments for R11 under a constant wall temperature condition were carried out. A microscale heater array was used for the heating and the measurement of high temporal and spatial resolution by the Wheatstone bridge circuit. Very sensitive heat flow rate data were obtained by the control for the surface condition with high time resolution. The measured heat flow rate shows a discernable peak at the initial growth stage and reaches an almost constant value. In the thermal growth region, bubble shows a growth proportional to $t^{\frac{1}{5}}$. The bubble growth behavior is analyzed with a dimensionless parameter to compare with the previous results in the same scale. As the wall superheat increases, the departure diameter and the departure time increase, and the waiting time decreases. But the asymptotic growth rate is not affected by the wall superheat change. The effect of the wall superheat is resolved into the suggested growth equation. Dimensionless parameters of time and bubble radius characterize the thermal growth behavior well, irrespective of wall condition. The comparison between the result of this study and the previous results shows a good agreement at the thermal growth region. The quantitative analysis for the heat transfer mechanism is conducted with the measured heat flow rate behavior and the bubble growth behavior. The required heat flow rate for the volume change of the observed bubble is about twice as much as the instantaneous heat flow rate supplied from the wall.

A Study on Destratification System Using Bubble Plume: Dimensional Analysis and Design Methodology (버블 플룸을 이용한 탈성층의 평가: 차원해석 및 설계방법론의 제시)

  • Kim, Sung-Hoon;Kim, Jae-Yun;Park, Heekyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.827-837
    • /
    • 2005
  • In this study, we derived a new non-dimensional variable including bubble size and air diffusing area by Buckingham's theorem for making a practical correlation with experimental results. Firstly, we drew a relationship between a non-dimensional variable, $NH/u_s$, which has a form of Froude number and destratification efficiency with a simple theoretical consideration. Then we derived two non-dimensional variables by Buckingham's ${\pi}$-theorem and equating them with a form of $Fr_N$ for making single parameter to correlate overall destratification efficiency. As the result, the single parameter Be number shows a correlations with destratification efficiencies obtained from laboratory and pilot experiments. Also, for the practical applications, we conducted multiple regression analysis using Be and tank area to make predictive equations about destratification efficiency. The result also shows a successful correlations with destratification efficiency ($R^2$>0.9, p<0.001). Using this equation, we proposed a new design methodology with respect to bubble diffusing area.

Performance of Heat Insulation Capability of the Concrete Applying Light Heat Generating Sheet (광발열 단열시트를 적용한콘크리트의 특성 )

  • Lee, Hyeon-Jik;Baek, Sung-Jin;Lee, Seung-Min;Lim, Gun-Su;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.169-170
    • /
    • 2023
  • In this study, light-heat generating materials were produced in two ways, and the performance of two light-generating insulation sheets was reviewed. As a result of the experiment, it was possible to confirm the improved heating performance of the light heating insulation sheet compared to the existing bubble sheet. The light heat insulation sheet (b) showed improved thermal properties compared to the existing bubble sheet, and it is believed that the temperature has increased due to the combined effect of initial hydration heat and heat generation after installation. In future studies additional experiments are needed to compensate for the insufficient insulation performance due to the single bubble sheet through the double bubble sheet and to adjust the amount of light-generating materials added as a consideration of the optimal heat-generating effect of the light-generating insulation sheet (b).

  • PDF

A COMPARATIVE STUDY OF LATTICE BOLTZMANN AND VOLUME OF FLUID METHOD FOR TWO-DIMENSIONAL MULTIPHASE FLOWS

  • Ryu, Seung-Yeob;Ko, Sung-Ho
    • Nuclear Engineering and Technology
    • /
    • v.44 no.6
    • /
    • pp.623-638
    • /
    • 2012
  • The volume of fluid (VOF) model of FLUENT and the lattice Boltzmann method (LBM) are used to simulate two-phase flows. Both methods are validated for static and dynamic bubble test cases and then compared to experimental results. The VOF method does not reduce the spurious currents of the static droplet test and does not satisfy the Laplace law for small droplets at the acceptable level, as compared with the LBM. For single bubble flows, simulations are executed for various Eotvos numbers, Morton numbers and Reynolds numbers, and the results of both methods agree well with the experiments in the case of low Eotvos numbers. For high Eotvos numbers, the VOF results deviated from the experiments. For multiple bubbles, the bubble flow characteristics are related by the wake of the leading bubble. The coaxial and oblique coalescence of the bubbles are simulated successfully and the subsequent results are presented. In conclusion, the LBM performs better than the VOF method.

Heat Transfer Characteristics under Saturated Nucleate Pool Boiling for Various Heating Surface Angles using Heater with Artificial Cavity (인공 캐비티를 가진 히터를 이용한 가열면 경사각에 따른 포화상태 풀 핵비등 열전달 기초연구)

  • Kim, Jeong-Bae
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.4
    • /
    • pp.7-14
    • /
    • 2009
  • Nucleate pool boiling experiments with constant heat flux condition were performed using pure R11 and R113 for various surface angles under saturated pool condition. A circular heater of 1 mm diameter, with artificial cavity in the center, fabricated using MEMS technique and the high-speed controller were used to maintain the constant heat flux. Images of bubble growth were taken at 5,000 frames per second using a high-speed CCD camera. The bubble geometry was obtained from the captured bubble images. The effects of surface angles on the bubble growth behaviors were analyzed as dimensional scales for the initial and thermal growth regions. The parameters for the bubble growth behaviors were bubble radius, bubble growth rate, sliding velocity, bubble shape and advancing and receding contact angles. These phenomena require further analysis for various surface angles, but this study will provide good experimental data with constant heat flux boundary condition for such works.

Comparative Study of Mass Transfer and Bubble Hydrodynamic Parameters in Bubble Column Reactor: Physical Configurations and Operating Conditions

  • Sastaravet, Prajak;Chuenchaem, Chomthisa;Thaphet, Nawaporn;Chawaloesphonsiya, Nattawin;Painmanakul, Pisut
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.345-354
    • /
    • 2014
  • In this paper, effects of physical configurations and operating conditions on bubble column performance were analyzed in terms of bubble hydrodynamic and mass transfer parameters. Bubble column with 3 different dimensions and 7 gas diffusers (single / multiple orifice and rigid / flexible orifice) were applied. High speed camera and image analysis program were used for analyzing the bubble hydrodynamic parameters. The local liquid-side mass transfer coefficient ($k_L$) was estimated from the volumetric mass transfer coefficient ($k_La$) and the interfacial area (a), which was deduced from the bubble diameter ($D_B$) and the terminal bubble rising velocity ($U_B$). The result showed that the values of kLa and a increased with the superficial gas velocity (Vg) and the size of bubble column. Influences of gas diffuser physical property (orifice size, thickness and orifice number) can be proven on the generated bubble size and the mass transfer performance in bubble column. Concerning the variation of $k_L$ coefficients with bubble size, 3 zones (Zone A, B and C) can be observed. For Zone A and Zone C, a good agreement between the experimental and the predicted $K_L$ coefficients was obtained (average difference of ${\pm}15%$), whereas the inaccuracy result (of ${\pm}40%$) was found in Zone B. To enhance the high $k_La$ coefficient and absorption efficiency in bubble column, it was unnecessary to generate numerous fine bubbles at high superficial gas velocity since it causes high power consumption with the great decrease of $k_L$ coefficients.