Effect of channel hight on Bubble growth under Saturated Nucleate Pool Boiling for Various Channel Height using Heater with Artificial Cavity

인공 캐비티를 가진 히터를 이용한 가열면의 채널 높이가 풀비등시 기포성장에 미치는 영향에 대한 기초연구

  • Kim, Jeong-Bae (Department of Energy System Engineering, Chungju National University) ;
  • Park, Moon-Hee (Daesung Institute for Clean Energy, Daegu City Gas) ;
  • Jeon, Woo-Cheol (Daesung Institute for Clean Energy, Daegu City Gas)
  • 김정배 (충주대학교 에너지시스템공학과) ;
  • 박문희 (대구도시가스 대성청정에너지연구소) ;
  • 전우철 (대구도시가스 대성청정에너지연구소)
  • Received : 2010.09.01
  • Accepted : 2010.10.20
  • Published : 2010.10.30

Abstract

Nucleate pool boiling experiments with constant heat flux condition were performed using pure R113 for various channel heights under saturated pool condition. A circular heater of 1mm diameter, with artificial cavity in the center, fabricated using MEMS technique and the high-speed controller were used to maintain the constant heat flux. Images of bubble growth were taken at 5,000 frames per second using a high-speed CCD camera. The bubble geometry was obtained from the captured bubble images. The effects of channel height on the bubble growth behaviors were analyzed as dimensional scales for the initial and thermal growth regions. The parameters for the bubble growth behaviors were bubble radius, bubble growth rate, and bubble shapes. These phenomena require further analysis for various surface angles, but this study will provide good experimental data with constant heat flux boundary condition for such works.

Keywords

References

  1. Mikic, B. B., Rohsenow, W. M. and Griffith, P. 1970. On Bubble Growth Rates. Int. J. Heat Mass Transfer, Vol. 13, pp. 657-666. https://doi.org/10.1016/0017-9310(70)90040-2
  2. Lee, H. C., Oh, B. D., Bae, S. W., and Kim, M. H. 2003. Single Bubble Growth in Saturated Pool Boiling on a Constant Wall Temperature Surface. Int. J. of Multiphase Flow, Vol. 29(12), pp. 1857-1874. https://doi.org/10.1016/j.ijmultiphaseflow.2003.09.003
  3. Kim, J., Oh, B. D., and Kim, M. H. 2006. Experimental Study of Pool Temperature Effects on Nucleate Pool Boiling. Int. J. of Multiphase Flow, Vol. 32, pp. 208-231. https://doi.org/10.1016/j.ijmultiphaseflow.2005.09.005
  4. Lee, H. C., Kim, J., Oh, B. D., and Kim, M. H. 2004. Single Bubble Growth in Saturated Pool Boiling of Binary Mixtures. Int. J. of Multiphase Flow, Vol. 30(6), pp. 697-710. https://doi.org/10.1016/j.ijmultiphaseflow.2004.05.007
  5. Githinji, P. M. and Sabersky, R. H. 1963. Some Effect of the Orientation of the Heating Surface in Nucleate Boiling. J. Heat Transfer, Vol. 85, pp. 379. https://doi.org/10.1115/1.3686129
  6. Chen, L. T. 1978. Heat Transfer to Pool Boiling Freon from Inclined Heating Plate. Lett. Heat Mass Transfer, Vol. 5, pp. 111-120. https://doi.org/10.1016/0094-4548(78)90025-5
  7. Jung, D. S., Venart, J. E. S., and Sousa, A. C. M. 1987. Effects of Enhanced Surfaces and Surface Orientation on Nucleate and Film Boiling Heat Transfer in R-11. Int. J. Heat Mass Transfer, Vol. 30, pp. 2627-2639. https://doi.org/10.1016/0017-9310(87)90144-X
  8. Chang, J. Y. and You, S. M. 1996. Heater Orientation Effects on Pool Boiling Micro-porous-enhanced Surfaces in Saturated FC-72. ASME J. Heat Transfer, Vol. 118, pp. 937-943 https://doi.org/10.1115/1.2822592
  9. Lee, J., Cho, K., Song, I. S., Kim, C. B., and Son, S. Y. 2003. Microscale Bubble Nucleation from an Artificial Cavity in Single Microchannel. ASME J. of Heat Transfer, Vol. 125, pp. 545. https://doi.org/10.1115/1.1617074
  10. 김정배. 2009. 인공 캐비티를 가진 히터를 이용한 가열면 경사각에 따른 포화상태 풀 핵비등 열전달 기초연구. 한국태양에너지학회 논문집, Vol. 29, No. 4, pp. 7-14.
  11. Kim, J., Kim, H. D., Lee, J., Kwon, Y. C., Kim, J. H, and Kim, M. H. 2006. Experimental Study on Heating Surface Angle Effects on Single Bubble Growth. J. of Mechanical Science and Technology. Vol. 20, No. 11, pp. 1980-1992. https://doi.org/10.1007/BF03027591