• Title/Summary/Keyword: Single Adhesive Layer

Search Result 90, Processing Time 0.031 seconds

Analytical Modeling of Carbon Nanotube Actuators (탄소나노튜브 액츄에이터의 이론적 모델링)

  • 염영일;박철휴
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1006-1011
    • /
    • 2004
  • Carbon nanotubes have outstanding properties which make them useful for a number of high-technology applications. Especially, single-walled carbon nanotube (SWNT), working under physical conditions (in aqueous solution) and converting electrical energy into mechanical energy directly, can be a good substitute for artificial muscle. The carbon nanotube structure simulated in this paper is an isotropic cantilever type with an adhesive tape which is sandwiched between two SWNTs. For predicting the geometrical and physical parameters such as deflection, slope, bending moment and induced force with various applied voltages, the analytical model for a 3 layer bimorph nanotube actuator is developed by applying Euler-Bernoulli beam theory. The governing equation and boundary conditions are derived from energy Principles. Also, the brief history of carbon nonotube is overviewed and its properties are compared with other functional materials. Moreover, an electro-mechanical coupling coefficient of the carbon nanotube actuator is discussed to identify the electro-mechanical energy efficiency.

Interfacial ultrastructure of the AQ Bond Plus

  • Haruyama, Chikahiro;Amgai, Tetsuya;Sugiyama, Toshiko;Muto, Yoshitake;Takase, Yasuaki;Hirai, Yoshito
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.601-601
    • /
    • 2003
  • AQ Bond Plus has the function of self-etching priming adhesive, which can be applied by single coating without second coating, being different from conventional AQ bonds. Moreover, because the absorption range of light became wider, the bond can comply with any visible light curing units. Thus, the bond can produce an unified form between the dentine layer with impregnated resin of good quality and the thin and hard film characteristically. In this study, we investigated the junctional conditions of AQ Bond Plus, using a scanning electron microscope (SEM).(omitted)

  • PDF

The microstructure and adhesive characteristics of Ti-Al-V-N films prepared by reactive magnetron sputtering (반응성 마그네트론 스퍼터링법으로 제조한 Ti-Al-V-N 박막의 미세조직 및 부착특성에 관한 연구)

  • Sohn, Yong-Un;Lee, Young-Ki
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.3
    • /
    • pp.199-205
    • /
    • 1999
  • The quaternary Ti-Al-V-N films have been grown on glass substrates by reactive dc and rf magnetron sputter deposition from a Ti-6Al-4V target in mixed Ar-$N_2$ discharges. The Ti-Al-V-N films were investigated by means of X-ray diffraction(XRD), electron probe microanalysis(EPMA) and scratch tester. Both XRD and EPMA results indicated that the Ti-Al-V-N films were of single B1 NaCl phase having columnar structure with the (111) preferred orientation. Scratch tester results showed that the adhesion strength of Ti-Al-V-N films which treated with substrate heating and vacuum annealing was superior to that of as-deposited film. The good adhesion strength was also achieved in the double-layer structure of Ti-Al-V-N/Ti-Al-V/Glass.

  • PDF

Application of Laser Surface Treatment Technique for Adhesive Bonding of Carbon Fiber Reinforced Composites (탄소복합재 접착공정을 위한 CFRP의 레이저 표면처리 기법의 적용)

  • Hwang, Mun-Young;Kang, Lae-Hyong;Huh, Mongyoung
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.371-376
    • /
    • 2020
  • The adhesive strength can be improved through surface treatment. The most common method is to improve physical bonding by varying the surface conditions. This study presents the effect of laser surface treatment on the adhesive strength of CFRP. The surface roughness was patterned using a 1064 nm laser. The effects of the number of laser shots and the direction and length of the pattern on the adhesion of the CFRP/CFRP single joint were investigated through tensile tests. Tests according to ASTM D5868 were performed, and the bonding mechanism was determined by analyzing the damaged surface after a fracture. The optimized number of the laser shots and the optimized depth of the roughness should be required to increase the bonding strength on the CFRP surface. When considering the shear stress in the tensile direction, the roughness pattern in the direction of 45° that increases the length of the fracture path in the adhesive layer resulted in an increase of the adhesive strength. The surface treatment of the bonding surface using a laser is a suitable method to acquire a mechanical bonding mechanism and improve the bonding strength of the CFRP bonding joint. The study on the optimized laser process parameters is required for utilizing the benefits of laser surface processing.

Ultrastructure of the Fertilized Egg Envelope in Cichlasoma managuensis, Cichlidae, Teleost (경골어류 시클리드과 Cichlasoma managuensis의 수정란 난막 미세구조)

  • Kim, Dong-Heui;Chang, Byung-Soo;Teng, Yung-Chien;Kim, Seok;Joo, Kyung-Bok;Lee, Kyu-Jae
    • Applied Microscopy
    • /
    • v.39 no.1
    • /
    • pp.9-15
    • /
    • 2009
  • The ultrastructure of the fertilized egg envelope in Cichlasoma managuensis belonging to Cichlidae were investigated by routine light and electron microscopes. The fertilized eggs of Cichlasoma managuensis was of the light yellow, non-transparent, ellipsoidal, adhesive and nonfloted type. The size of fertilized egg was the major axis $1.92{\pm}0.08\;mm$, the minor axis $1.43{\pm}0.04\;mm$. The egg envelopes have a single micropyle, which is thought to the pathway of sperm in the area of the animal pole. An outer surface of fertilized egg envelope was covered by a adhesive reticular structures and the fertilized egg envelopes consisted of two distinct layers; an outer adhesive layer and an inner layer of $13{\sim}15$ horizontal lower electron density lamellae alternating with interlamellae of higher electron density. The external shape of fertilized egg is common trait of fishes belonging to Cichlidae and these ultrastructural characters of fertilized egg envelope can be utilized in taxonomy of teleost.

Exploration of growth mechanism for layer controllable graphene on copper

  • Song, Woo-Seok;Kim, Yoo-Seok;Kim, Soo-Youn;Kim, Sung-Hwan;Jung, Dae-Sung;Jun, Woo-Sung;Jeon, Cheol-Ho;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.490-490
    • /
    • 2011
  • Graphene, hexagonal network of carbon atoms forming a one-atom thick planar sheet, has been emerged as a fascinating material for future nanoelectronics. Huge attention has been captured by its extraordinary electronic properties, such as bipolar conductance, half integer quantum Hall effect at room temperature, ballistic transport over ${\sim}0.4{\mu}m$ length and extremely high carrier mobility at room temperature. Several approaches have been developed to produce graphene, such as micromechanical cleavage of highly ordered pyrolytic graphite using adhesive tape, chemical reduction of exfoliated graphite oxide, epitaxial growth of graphene on SiC and single crystalline metal substrate, and chemical vapor deposition (CVD) synthesis. In particular, direct synthesis of graphene using metal catalytic substrate in CVD process provides a new way to large-scale production of graphene film for realization of graphene-based electronics. In this method, metal catalytic substrates including Ni and Cu have been used for CVD synthesis of graphene. There are two proposed mechanism of graphene synthesis: carbon diffusion and precipitation for graphene synthesized on Ni, and surface adsorption for graphene synthesized on Cu, namely, self-limiting growth mechanism, which can be divided by difference of carbon solubility of the metals. Here we present that large area, uniform, and layer controllable graphene synthesized on Cu catalytic substrate is achieved by acetylene-assisted CVD. The number of graphene layer can be simply controlled by adjusting acetylene injection time, verified by Raman spectroscopy. Structural features and full details of mechanism for the growth of layer controllable graphene on Cu were systematically explored by transmission electron microscopy, atomic force microscopy, and secondary ion mass spectroscopy.

  • PDF

A STUDY OF SHEAR BOND STRENGTH OF ER:YAG LASER-IRRADIATED PRIMARY DENTIN (Er:YAG 레이저를 조사한 유치 상아질의 전단결합강도에 관한 연구)

  • Lee, Jin-Hwa;Kim, Jong-Soo;Yoo, Seung-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.4
    • /
    • pp.569-578
    • /
    • 2007
  • This study was performed to compare the shear bond strength of self etching system and two bottle bonding system with or without laser preparation. Group I was prepared with high speed rotary instrument and $Prompt^{TM}$ L-$Pop^{TM}$, group II with Er:YAG laser and $Prompt^{TM}$ L-$Pop^{TM}$, group III with Er:YAG laser, 37% phosphoric acid and Single bond, group IV with Er:YAG laser and Single bond and group V with high speed, etching and Single bond. And also observation of the prepared and etched dentin surface were performed under scanning electro-microscope. The possibility of clinical application of laser preparation which might have an advantage to reduce pain for children with less unfavorable noise were evaluated. The results obtained are as follows; 1. Group V showed significantly higher bond strength than other groups. And group IV showed significantly lower bond strength than other groups. 2. There was no significant difference between group I and group III. 3. Group II showed significantly lower bond strength than group I, III, V, but showed significantly higher bond strength than group IV. 4. Under scanning electro-microscope, laser-preparated dentin surface showed high irregularity and no smear layer. The surface showed less irregularities and more exposed dentinal tubules with etching. Laser preparation has many advantages over conventional tooth preparation. But this method showed lower resin bonding strength. Laser preparated tooth surface differed from the conventionally preparated tooth surface. More researches are needed on suitable methods for laser preparated dentin surface.

  • PDF

Stress Intensity Factor of Single Edge Cracked Plates Considering Materials and Geometry of Patch by p-Convergent Partial Layerwise Model (p-수렴 부분층별모델에 의한 일변균열판의 패치재료 및 기하형상에 따른 응력확대계수)

  • Ahn, Hyeon-Ji;Ahn, Jae-Seok;Woo, Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.191-198
    • /
    • 2010
  • This study investigated that the stress reduction of single edge cracked plates with patch repairs according to different type of patching such as material, size and thickness of patch and adhesive as well as single sided or double sided patches. As a numerical tool, the p-convergent partial layerwise model has been employed. The proposed model is formulated by assuming piecewise linear variation of in-plane displacement and a constant value of out-of-plane displacements across thickness. The integrals of Legendre polynomials are chosen to define displacement fields and Gauss-Lobatto numerical integration is implemented in order to directly obtain maximum values occurred at the nodal points of each layer without other extrapolation techniques. Also, total strain energy release rate method is adopted to obtain stress intensity factors. Numerical examples are presented not only to demonstrate the stress reduction effect in terms of non-dimensional stress intensity factor and deflection with respect to different type of patch repairs, but also the accuracy of proposed model.

Luminous Characteristics of Transparent Field Emitters Produced by Using Ultra-thin Films of Single Walled Carbon Nanotubes

  • Jang, Eun-Soo;Goak, Jeung-Choon;Lee, Han-Sung;Lee, Seung-Ho;Lee, Nae-Sung
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.31.1-31.1
    • /
    • 2009
  • Carbon nanotubes (CNTs) are attractive material because of their superior electrical, mechanical, and chemical properties. Furthermore, their geometric features such as a large aspect ratio and a small radius of curvature at tip make them ideal for low-voltage field emission devices including backlight units of liquid crystal display, lighting lamps, X-ray source, microwave amplifiers, electron microscopes, etc. In field emission devices for display applications, the phosphor anode is positioned against the CNT emitters. In most case, light generated from the phosphor by electron bombardment passes through the anode front plate to reach observers. However, light is produced in a narrow depth of the surface of the phosphor layer because phosphor particles are big as much as several micrometers, which means that it is necessary to transmit through the phosphor layer. Hence, a drop of light intensity is unavoidable during this process. In this study, we fabricated a transparent cathode back plate by depositing an ultra-thin film of single walled CNTs (SWCNTs) on an indium tin oxide (ITO)-coated glass substrate. Two types of phosphor anode plates were employed to our transparent cathode back plate: One is an ITO glass substrate with a phosphor layer and the other is a Cr-coated glass substrate with phosphor layer. For the former case, light was radiated from both the front and the back sides, where luminance on the back was ~30% higher than that on the front in our experiments. For the other case, however, light was emitted only from the cathode back side as the Cr layer on the anode glass rolled as a reflecting mirror, improving the light luminance as much as ~60% compared with that on the front of one. This study seems to be discussed about the morphologies and field emission characteristics of CNT emitters according to the experimental parameters in fabricating the lamps emitting light on the both sides or only on the cathode back side. The experimental procedures are as follows. First, a CNT aqueous solution was prepared by ultrasonically dispersing purified SWCNTs in deionized water with sodium dodecyl sulfate (SDS). A milliliter or even several tens of micro-liters of CNT solution was deposited onto a porous alumina membrane through vacuum filtration. Thereafter, the alumina membrane was solvated with the 3 M NaOH solution and the floating CNT film was easily transferred to an ITO glass substrate. It is required for CNT film to make standing CNTs up to serve as electron emitter through an adhesive roller activation.

  • PDF

IN VIVO EFFECTS OF DENTIN BONDING AGENTS ON DENTINAL FLUID MOVEMENT AND INTRADENTAL NERVE ACTIVITY (In vivo에서 상아질 접착제 도포가 상아세관액 이동과 치수신경활동에 미치는 영향)

  • Son, Ho-Hyun;Lee, Kwang-Won;Park, Soo-Jung
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.1
    • /
    • pp.425-435
    • /
    • 1996
  • The effect of application of dentin bonding agent to the exposed dentin on the intradental nerve activity (INA), dentinal fluid movement and sealing of the dentinal tubules, was investigated in this study. The INA was recorded from the single pulp nerve unit dissected from the inferior alveolar nerve. And specimen of dentin was observed by SEM. Dentinal fluid 'movement through exposed dentin surface was measured before and after the application of dentin bonding agent. 1. Eight Ao-fiber units (conduction velocity: $8.0{\pm}4.0m$/sec) were identified. 4M NaCl evoked an irregular burst of action potentials which ceased immediately after washing. 2. In 4 $A{\delta}$-fiber units, appliction of All Bond 2 completely abolished the INA induced by 4M NaCl. Also, application of Scotchbond Multipurpose(SBMP) totally abolished the INA induced by 4M NaCl in 4 $A{\delta}$-fiber units. 3. Before the application of dentin bonding agent, outward dentinal fluid movement of $10.2{\pm}5.7\;pl{\cdot}s^{-1}{\cdot}mm^{-2}$ was obsered. But after the application of dentin bonding agent the movement of dentinal fluid was stopped. 4. The gap width of 2-$3{\mu}m$ was formed between exposed dentin and adhesive resin in the specimens applied with dentin bonding agents of All Bone 2 and SBMP. But the formation of hybrid layer and the penetration of resin into were dentinal tubules were not clearly observed in interface between dentin and adhesive resin.

  • PDF