• 제목/요약/키워드: Simultaneous Wireless Information

검색결과 64건 처리시간 0.024초

The Throughput Order of Multicast Traffics with Physical-Layer Network Coding in Random Wireless Ad Hoc Networks

  • Chen, Chen;Bai, Lin;He, Jianhua;Xiang, Haige;Choi, Jin-Ho
    • Journal of Communications and Networks
    • /
    • 제13권3호
    • /
    • pp.214-220
    • /
    • 2011
  • This paper attempts to address the effectiveness of physical-layer network coding (PNC) on the throughput improvement for multi-hop multicast in random wireless ad hoc networks (WAHNs). We prove that the per session throughput order with PNC is tightly bounded as ${\Theta}((n\sqrt{m}R(n))^{-1})$ if $m=(R^{-2}(n))$, where n is the total number of nodes, R(n) is the communication range, and m is the number of destinations for each multicast session. We also show that per-session throughput order with PNC is tight bounded as ${\Theta}(n^{-1})$, when $m={\Omega}(R^{-2}(n))$. The results of this paper imply that PNC cannot improve the throughput order of multicast in random WAHNs, which is different from the intuition that PNC may improve the throughput order as it allows simultaneous signal access and combination.

Smart-tracking Systems Development with QR-Code and 4D-BIM for Progress Monitoring of a Steel-plant Blast-furnace Revamping Project in Korea

  • Jung, In-Hye;Roh, Ho-Young;Lee, Eul-Bum
    • 국제학술발표논문집
    • /
    • The 8th International Conference on Construction Engineering and Project Management
    • /
    • pp.149-156
    • /
    • 2020
  • Blast furnace revamping in steel industry is one of the most important work to complete the complicated equipment within a short period of time based on the interfaces of various types of work. P company has planned to build a Smart Tracking System based on the wireless tag system with the aim of complying with the construction period and reducing costs, ahead of the revamping of blast furnace scheduled for construction in February next year. It combines the detailed design data with the wireless recognition technology to grasp the stage status of design, storage and installation. Then, it graphically displays the location information of each member in relation to the plan and the actual status in connection with Building Information Modeling (BIM) 4D Simulation. QR Code is used as a wireless tag in order to check the receiving status of core equipment considering the characteristics of each item. Then, DB in server system is built, status information is input. By implementing BIM 4D Simulation data using DELMIA, the information on location and status is provided. As a feature of the S/W function, a function for confirming the items will be added to the cellular phone screen in order to improve the accuracy of tagging of the items. Accuracy also increases by simultaneous processing of storage and location tagging. The most significant effect of building this system is to minimize errors in construction by preventing erroneous operation of members. This system will be very useful for overall project management because the information about the position and progress of each critical item can be visualized in real time. It could be eventually lead to cost reduction of project management.

  • PDF

MIMO 간섭채널에서 정보와 전력의 동시 전송 (SWIPT)을 위한 송수신기 설계 (Joint Transceiver Design for SWIPT in MIMO Interference Channel)

  • 서방원
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권5호
    • /
    • pp.55-62
    • /
    • 2019
  • 본 논문에서는 K 사용자 MIMO 간섭 채널을 고려하였으며, 정보와 전력을 동시에 전송하는 SWIPT 시스템을 위한 송수신기 설계 방법에 대해서 다룬다. 그리고, 정보 수신 장치와 전력 수확 장치가 같은 수신기에 존재하는 SWIPT 시스템을 고려한다. 제안하는 방식에서는 신호대 누수 잡음비 (SLNR)를 비용 함수로 사용하고, 수확 전력에 대한 임계값을 만족하도록 송수신기를 설계한다. 즉, 수확 전력에 대한 제약 조건 하에서, SLNR을 최대화시키도록 송신단 프리코딩 벡터, 수신단 검파기 벡터, 전력 분배 상수를 동시에 설계한다. 컴퓨터 모의실험을 통하여, 제안하는 기법과 기존 기법의 신호 대 간섭 잡음비 (SINR) 성능을 비교하였다. 사용자 수, 송신 안테나 개수, 수신 안테나 개수 간의 특별한 제약 조건을 만족하는 경우, 제안하는 기법은 낮은 SNR에서 기존 기법보다 우수한 SINR 성능을 나타낸다는 것을 보였다. 또한, 특별한 제약 조건을 만족하지 못하는 경우에는, 제안 기법이 모든 SNR 범위에 대해서 기존 기법보다 더 우수한 성능을 나타낸다는 것을 보였다.

Full-Duplex Operations in Wireless Powered Communication Networks

  • Ju, Hyungsik;Lee, Yuro;Kim, Tae-Joong
    • ETRI Journal
    • /
    • 제39권6호
    • /
    • pp.794-802
    • /
    • 2017
  • In this paper, a wireless powered communication network (WPCN) consisting of a hybrid access point (H-AP) and multiple user equipment (UE), all of which operate in full-duplex (FD), is described. We first propose a transceiver structure that enables FD operation of each UE to simultaneously receive energy in the downlink (DL) and transmit information in the uplink (UL). We then provide an energy usage model in the proposed UE transceiver that accounts for the energy leakage from the transmit chain to the receive chain. It is shown that the throughput of an FD WPCN using the proposed FD UE (FD-WPCN-FD) can be maximized by optimal allocation of the UL transmission time to the UE by solving a convex optimization problem. Simulation results reveal that the use of the proposed FD UE efficiently improves the throughput of a WPCN with a practical self-interference cancellation capability at the H-AP. Compared to the WPCN with FD H-AP and half-duplex (HD) UE, FD-WPCN-FD achieved an 18% throughput gain. In addition, the throughput of FD-WPCN-FD was shown to be 25% greater than that of WPCN in which an H-AP and UE operated in HD.

Minimum Energy-per-Bit Wireless Multi-Hop Networks with Spatial Reuse

  • Bae, Chang-Hun;Stark, Wayne E.
    • Journal of Communications and Networks
    • /
    • 제12권2호
    • /
    • pp.103-113
    • /
    • 2010
  • In this paper, a tradeoff between the total energy consumption-per-bit and the end-to-end rate under spatial reuse in wireless multi-hop network is developed and analyzed. The end-to-end rate of the network is the number of information bits transmitted (end-to-end) per channel use by any node in the network that is forwarding the data. In order to increase the bandwidth efficiency, spatial reuse is considered whereby simultaneous relay transmissions are allowed provided there is a minimum separation between such transmitters. The total energy consumption-per-bit includes the energy transmitted and the energy consumed by the receiver to process (demodulate and decoder) the received signal. The total energy consumption-per-bit is normalized by the distance between a source-destination pair in order to be consistent with a direct (single-hop) communication network. Lower bounds on this energy-bandwidth tradeoff are analyzed using convex optimization methods. For a given location of relays, it is shown that the total energy consumption-per-bit is minimized by optimally selecting the end-to-end rate. It is also demonstrated that spatial reuse can improve the bandwidth efficiency for a given total energy consumption-per-bit. However, at the rate that minimizes the total energy consumption-per-bit, spatial reuse does not provide lower energy consumption-per-bit compared to the case without spatial reuse. This is because spatial reuse requires more receiver energy consumption at a given end-to-end rate. Such degraded energy efficiency can be compensated by varying the minimum separation of hops between simultaneous transmitters. In the case of equi-spaced relays, analytical results for the energy-bandwidth tradeoff are provided and it is shown that the minimum energy consumption-per-bit decreases linearly with the end-to-end distance.

Simultaneous Information and Power Transfer Using Magnetic Resonance

  • Lee, Kisong;Cho, Dong-Ho
    • ETRI Journal
    • /
    • 제36권5호
    • /
    • pp.808-818
    • /
    • 2014
  • To deal with the major challenges of embedded sensor networks, we consider the use of magnetic fields as a means of reliably transferring both information and power to embedded sensors. We focus on a power allocation strategy for an orthogonal frequency-division multiplexing system to maximize the transferred power under the required information capacity and total available power constraints. First, we consider the case of a co-receiver, where information and power can be extracted from the same signal. In this case, we find an optimal power allocation (OPA) and provide the upper bound of achievable transferred power and capacity pairs. However, the exact calculation of the OPA is computationally complex. Thus, we propose a low-complexity power reallocation algorithm. For practical consideration, we consider the case of a separated receiver (where information and power are transferred separately through different resources) and propose two heuristic power allocation algorithms. Through simulations using the Agilent Advanced Design System and Ansoft High Frequency Structure Simulator, we validate the magnetic-inductive channel characteristic. In addition, we show the performances of the proposed algorithms by providing achievable ${\eta}$-C regions.

Joint Uplink and Downlink Resource Allocation in Data and Energy Integrated Communication Networks

  • Yu, Qin;Lv, Kesi;Hu, Jie;Yang, Kun;Hong, Xuemin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권6호
    • /
    • pp.3012-3028
    • /
    • 2017
  • In this paper, we propose a joint power control strategy for both the uplink and downlink transmission by considering the energy requirements of the user equipments' uplink data transmissions in data and energy integrated communication networks (DEINs). In DEINs, the base station (BS) adopts the power splitting (PS) aided simultaneous wireless information and power transfer (SWIPT) technique in the downlink (DL) transmissions, while the user equipments (UEs) carry out their own uplink (UL) transmissions by exploiting the energy harvested during the BS's DL transmissions. In our DEIN model, there are M UEs served by the BS in order to fulfil both of their DL and UL transmissions. The orthogonal frequency division multiple access (OFDMA) technique is adopted for supporting the simultaneous transmissions of multiple UEs. Furthermore, a transmission frame is divided into N time slots in the medium access control (MAC) layer. The mathematical model is established for maximizing the sum-throughput of the UEs' DL transmissions and for ensuring their fairness during a single transmission frame T, respectively. In order to achieve these goals, in each transmission frame T, we optimally allocate the BS's power for each subcarrier and the PS factor for each UE during a specific time slot. The original optimisation problems are transformed into convex forms, which can be perfectly solved by convex optimisation theories. Our numerical results compare the optimal results by conceiving the objective of maximising the sum-throughput and those by conceiving the objective of maximising the fair-throughput. Furthermore, our numerical results also reveal the inherent tradeoff between the DL and the UL transmissions.

Selective Decoding Schemes and Wireless MAC Operating in MIMO Ad Hoc Networks

  • Suleesathira, Raungrong;Aksiripipatkul, Jansilp
    • Journal of Communications and Networks
    • /
    • 제13권5호
    • /
    • pp.421-427
    • /
    • 2011
  • Problems encountered in IEEE 802.11 medium access control (MAC) design are interferences from neighboring or hidden nodes and collision from simultaneous transmissions within the same contention floors. This paper presents the selective decoding schemes in MAC protocol for multiple input multiple output ad-hoc networks. It is able to mitigate interferences by using a developed minimum mean-squared error technique. This interference mitigation combined with the maximum likelihood decoding schemes for the Alamouti coding enables the receiver to decode and differentiate the desired data streams from co-channel data streams. As a result, it allows a pair of simultaneous transmissions to the same or different nodes which yields the network utilization increase. Moreover, the presented three decoding schemes and time line operations are optimally selected corresponding to the transmission demand of neighboring nodes to avoid collision. The selection is determined by the number of request to send (RTS) packets and the type of clear to send packets. Both theoretical channel capacity and simulation results show that the proposed selective decoding scheme MAC protocol outperforms the mitigation interference using multiple antennas and the parallel RTS processing protocols for the cases of (1) single data stream and (2) two independent data streams which are simultaneously transmitted by two independent transmitters.

이기종 무선망의 동시 사용을 통한 처리량 향상 기법 (Throughput enhancement of heterogeneous wireless networks using simultaneous access)

  • 정현진;최승식
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(D)
    • /
    • pp.328-330
    • /
    • 2012
  • 본 논문에서는 무선 이동 단말이 이기종 망의 동시 사용을 통해 높은 대역폭을 이용하고 또한 망의 이동이 발생할 때 이기종 망의 동시사용을 통해 손실 패킷을 감소시킬 수 있는 기법을 제안한다. WLAN과 3G망 등 여러 가지의 망을 이용할 수 있는 환경에서 하나의 망을 사용하는 것이 아니라 다중망의 이용을 통해 대역폭을 넓게 사용한다. 핸드오버가 발생하는 경우 기존의 망의 연결을 끊지 않고 지속적으로 연결하기 때문에 망의 이동 과정에서 발생하는 패킷 손실을 감소시킨다. 이를 시뮬레이션을 통해 비교 분석하였고 성능이 향상됨을 확인하였다.

음성/데이터 통합형 PRMA 프로토콜의 성능 개선 기법 (A Method for the Performance Ehancement of PRMA Protocol for Mobile Voice/Data Integration)

  • 송재섭;김연수
    • 한국통신학회논문지
    • /
    • 제25권3B호
    • /
    • pp.423-430
    • /
    • 2000
  • Future microcellular systems will require distributed network control. A packet-switched network is suitable for this requirement. The packet reservation multiple access(PRMA) is a Reservation-ALOHA like protocol for wireless terminals to transmit packet speech to a base station. It allows spatially distributed users in cellular systems to transmit packeted voice and data to a common base station using a shared channel. In the existing PRMA, the problem is that the voice packets may collide with the data packets due to simultaneous channel access. the problem may be a major performance degradation factor to a voice and data mixed system. We propose a new PRMA method that integrates voice and data traffic efficiently by resolving the collision problem between data and voice packets. The proposed PRMA method gives a performance improvement than the existing PRAMA method in terms of voice packet dropping probability and data delay characteristic. From analytic results, we can confirm that the proposed PRMA method show a performance improvement than the existing PRMA protocol.

  • PDF