• 제목/요약/키워드: Simulink model

검색결과 555건 처리시간 0.032초

풍력 시스템 하중 절감을 위한 피치 제어에 관한 연구 (A Study on Pitch Control for Load - Reducing of Wind Turbine)

  • 김성호;윤용하;이현주;최원호;이승구
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.374-377
    • /
    • 2007
  • This paper deals with a pitch control for reducing load of the wind turbine system. To make a model of the wind turbine system, the Momentum Theory and Blade Element Theory are used. Considering wind shear, wind model was also built. Due to a difference of the wind speed between upper parts and lower parts of the sweep area, overturning moment of the wind turbine is generated. So, in this paper through analyzing of the system model of the wind turbine, a control algorithm which was able to achieve both maintaining power and reducing overturning moment was proposed. Using matlab simulink, controller performance was verified.

  • PDF

영구자석 동기 전동 시스템의 전기적 오류 분석을 위한 시뮬레이션 모델 개발 (Development of Simulation Model for Electrical Fault Analysis of PMSM Drive System)

  • 최진철;홍원복;이우택
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.848-849
    • /
    • 2008
  • This paper presents a simulation model to analyze effects of electrical faults for the Permanent Magnet Synchronous Motor(PMSM) drive system. The major fault modes of system are investigated and an intuitive system model is developed using MATLAB/Simulink. The developed model provides useful environments to inject and remove the various faults. Simulation results show the dynamic performances of system during the transient state from normal to fault, and those will be a great help to make a system more reliable.

  • PDF

아크스프링의 이산화 모델을 사용한 DMF 성능 시뮬레이션 (Performance Simulation for a Dual Mass Flywheel using Discrete Model of Arcspring)

  • 김태현;김민성;송한림;어순기;김현수
    • 한국자동차공학회논문집
    • /
    • 제12권4호
    • /
    • pp.146-153
    • /
    • 2004
  • This paper presents a discrete analysis approach to investigate the performance of dual mass flywheel (DMF). In the discrete analysis, arcspring installed between the flywheels is modeled as N- discrete elements. Each element consists of mass, spring and nonlinear friction element. LuGre friction model is used to describe nonlinear friction characteristic. Based on the dynamic models of the DMF, clutch, engine, manual transmission and vehicle, a DMF performance simulator is developed using MATLAB Simulink. Simulation results of the engine speed, driveshaft torque and vehicle velocity are compared with test results. It is found that the discrete DMF model describes the vehicle behavior closely, especially during the clutch actuation period.

ANFIS 기반 경로추종 운동제어에 의한 모형차량의 자동주차 (Autonomous Parking of a Model Car with Trajectory Tracking Motion Control using ANFIS)

  • 장효환;김창환
    • 한국정밀공학회지
    • /
    • 제26권12호
    • /
    • pp.69-77
    • /
    • 2009
  • In this study an ANFIS-based trajectory tracking motion control algorithm is proposed for autonomous garage and parallel parking of a model car. The ANFIS controller is trained off-line using data set which obtained by Mandani fuzzy inference system and thereby the processing time decreases almost in half. The controller with a steering delay compensator is tuned through simulations performed under MATLAB/Simulink environment. Experiments are carried out with the model car for garage and parallel parking. The experimental results show that the trajectory tracking performance is satisfactory under various initial and road conditions

저항점 용접에서 전극팽창에 관한 동적모델 (Dynamic Model for Electrode Expansion in Resistance Spot Welding Machines)

  • 아사드 샤;장희석
    • Journal of Welding and Joining
    • /
    • 제29권2호
    • /
    • pp.94-101
    • /
    • 2011
  • A lumped mass damped vibratory model was proposed for quantitative understanding of welding machine characteristics. An experimental setup was developed to determine the mechanical parameters (moving mass m, equivalent stiffness k and damping c) which govern the dynamic mechanical response of the resistance spot welding machine. During the test, acceleration of the electrodes for each level of applied load was measured by accelerometer, filtered and numerically integrated to find the corresponding velocity and displacement. The machine dynamic parameters were determined by finding the unknowns of the proposed model with experimental data. A Simulink model was proposed to investigate the influence of these mechanical parameters on the welding process. The electrode response was simulated by changing values of stiffness and damping. It was observed that both of the machine parameters(c, k) have significant effect on the response of electrode head.

자동차 동력원별(ICEV, PHEV) 연비산출 모델개발 및 이의 검증 (Verification and Development of Simulation Model for Fuel Consumption Calculation between ICEV and PHEV)

  • 김주환;박정민;김탁규;이진욱
    • 한국분무공학회지
    • /
    • 제22권2호
    • /
    • pp.47-54
    • /
    • 2017
  • $CO_2$ emission regulation will be prescribed and main issue in automotive industry. Mostly, vehicle's fuel efficiency deeply related to $CO_2$ emission is regulated by qualified driving test cycle by using chassis dynamometer and exhaust gas analyser. But, real driving fuel consumption rate depends so much on the individual usage profile and where it is being driven: city traffic, road conditions. In this study, vehicle model of fuel consumption rate for ICEV and PHEV was developed through co-simulation with CRUISE model and Simulink based on driving control model. The simulation results of fuel consumption rate were analysed with on-road vehicle data and compared with its official level.

PEM 연료전지 자동차의 급기 시스템의 모델링 및 분석 (Modeling and Analysis of the Air Supply System for Vehicular PEM Fuel Cell)

  • 장현탁;강이석
    • 한국수소및신에너지학회논문집
    • /
    • 제14권3호
    • /
    • pp.236-246
    • /
    • 2003
  • This paper focuses on developing a model of a PEM fuel cell stack and to integrate it with realistic model of the air supply system for fuel cell vehicle application. The fuel cell system model is realistically and accurately simulated air supply operation and its effect on the system power and efficiency using simulation tool Matlab/Simulink. The Peak performance found at a pressure ratio of 3, and it give a 15mV increase per cell. The limit imposed is a minimum SR(Stoichiometric Ratio) of 2 at low fuel cell load and 2.5 at high fuel cell load.

전방 충돌경보 및 회피시스템 모델링 (Modeling of Forward Collision Warning and Avoidance System)

  • 오병근;조남효
    • 한국군사과학기술학회지
    • /
    • 제3권2호
    • /
    • pp.156-165
    • /
    • 2000
  • This paper describes modeling and simulation of automotive forward collision warning and avoidance system using CASE(Computer-Aided Systems Engineering) tool. The system is composed or many sensors, a controller, warning devices, brakes and etc. The system was modeled by one activity chart, fourteen state charts and one module chart. Rear-end collision scenarios was generated by Simulink and used to support Stalemate model. The resulting model was used to evaluate the correctness of function and behavior of the system. A simulator for the system has been designed and used to validate the model under realistic operating conditions in the laboratory. To model and simulate the system's functionality and behavior brings clarity to system design early in the system development.

  • PDF

주행특성을 고려한 차량 견인시스템 모델링 (Modeling for Traction system of the Vehicle including Running Characteristics)

  • 변윤섭;김영철
    • 전기학회논문지
    • /
    • 제56권11호
    • /
    • pp.1955-1961
    • /
    • 2007
  • In this paper, we propose the mathematical model for the vehicle system including running characteristics. The well defined model for a system is necessary to study and to enhance system performance. To model the dynamic properties of vehicle system, we have considered two fundamental parts. The first part is the motion equations for vehicle based on Newton's second law. The second part is the torque dynamics of the traction motor. These parts are affected by outer conditions such as adhesive coefficient, running resistance and gradient resistance. The each parts are presented by the numerical formula. To test the driving characteristics of the developed model, we performed the simulations by dynamic system simulation software, "SIMULINK" and the results are given for several conditions.

반능동현가장치용 전자제어식 연속가변댐퍼의 모델링 및 동특성 해석 (Modeling and Dynamic Characteristics Analysis of a Continuously Variable Damper with Electro-Hydraulic Pressure Control Valve)

  • 도홍문;홍경태;홍금식
    • 제어로봇시스템학회논문지
    • /
    • 제8권2호
    • /
    • pp.158-166
    • /
    • 2002
  • A mathematical model and dynamic characteristics ova continuously variable damper for semi-active suspen- sion systems are investigated. After analyzing the geometry of a typical continuously variable damper, mathematical models fur individual components including piston, orifices, spring, and valves are first derived and then the flow equations for extension and compression strokes are investigated. To verify the developed mathematical model, the dynamic response of the model are simulated using MATLAB/SIMULINK and are compared with experimental results. The proposed model can be used not only for mechanical components design but also for control system design.