• Title/Summary/Keyword: Simulink model

Search Result 558, Processing Time 0.028 seconds

Collision Avoidance using Model Predictive Control (모델 예측 제어를 활용한 충돌 회피)

  • Choi, Jaewoong;Seo, Jongsang;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.2
    • /
    • pp.32-38
    • /
    • 2013
  • This paper presents collision avoidance using model predictive control algorithm. A model predictive control algorithm determines lateral tire force and yaw moment and steering angle input and differential braking input is determined from lateral tire force and yaw moment. A constraint for model predictive control is designed for obstacle avoidance. A objective function is designed to minimize lateral tire force and yaw moment input and to follow changed lane after collision avoidance. The performance of proposed algorithm has been investigated via computer simulation conducted to vehicle dynamic software CARSIM and Matlab/Simulink.

Dynamic Model of PEM Fuel Cell Using Real-time Simulation Techniques

  • Jung, Jee-Hoon;Ahmed, Shehab
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.739-748
    • /
    • 2010
  • The increased integration of fuel cells with power electronics, critical loads, and control systems has prompted recent interest in accurate electrical terminal models of the polymer electrolyte membrane (PEM) fuel cell. Advancement in computing technologies, particularly parallel computation techniques and various real-time simulation tools have allowed the prototyping of novel apparatus to be investigated in a virtual system under a wide range of realistic conditions repeatedly, safely, and economically. This paper builds upon both advancements and provides a means of optimized model construction boosting computation speeds for a fuel cell model on a real-time simulator which can be used in a power hardware-in-the-loop (PHIL) application. Significant improvement in computation time has been achieved. The effectiveness of the proposed model developed on Opal RT's RT-Lab Matlab/Simulink based real-time engineering simulator is verified using experimental results from a Ballard Nexa fuel cell system.

Control Method to Single Degree or Three Degrees of Freedom for Hybrid Testing (하이브리드 실험을 위한 1 또는 3자유도에 대한 제어 기법)

  • Lee, Jae-Jin;Kang, Dae-Hung;Kim, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2409-2421
    • /
    • 2011
  • This paper will present hybrid tests to a one bay-one story steel frame structure under ground excitation. A structure used in this paper for hybrid test, to evaluate performance and behavior, is divided into two models; one is numerical model with one column element, and a truss or a beam element, the other is physical substructural model with one beam-column element. All tests considered one or three degrees of freedom to implement real-time hybrid test, and two control algorithms to control hardware are used; one using MATLAB/Simulink, the other using OpenSees, OpenFresco and xPCTarget. In addition, for real-time data communication between numerical and physical substructural models SCRAMNet was used. The results of hybrid tests were compared with one of numerical analysis of numerical model with fiber force-based beam-column elements using OpenSees. Real-time hybrid tests were implemented for the validation of control system with simple structure, and then it will be extended to hybrid test for higher nonlinear or complex structure later on.

  • PDF

A Study on the Design of Controller for Speed Control of the Induction Motor in the Train Propulsion System-2 (열차추진시스템에서 유도전동기의 속도제어를 위한 제어기 설계에 대한 연구-2)

  • Lee, Jung-Ho;Kim, Min-Seok;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.166-172
    • /
    • 2010
  • Currently, vector control is used for speed control of trains because induction motor has high performance is installed in Electric railroad systems. Also, control of the induction motor is possible through various methods by developing inverters and control theory. Presently, rolling stocks which use the induction motor are possible to brake trains by using AC motor. Therefore model of motor block and induction motor is needed to adapt various methods. There is Variable Voltage Variable Frequency (VVVF) as the control method of the induction motor. The torque and speed is controlled in the VVVF. The propulsion system model in the electric railroad has many sub-systems. So, the analysis of performance of the speed control is very complex. In this paper, simulation models are suggested by using Matlab/Simulink in the speed control characteristic. On the basis of the simulation models, the response to disturbance input is analyzed about the load. Also, the current, speed and flux control model are proposed to analyze the speed control characteristic in the train propulsion system.

Mathematical Model for Dynamic Performance Analysis of Multi-Wheel Vehicle (다수의 바퀴를 가진 차량의 동적 거동 해석의 수학적 모델)

  • Kim, Joon-Young
    • Journal of the Korea Convergence Society
    • /
    • v.3 no.4
    • /
    • pp.35-44
    • /
    • 2012
  • In this study, a simulation program is developed in order to investigate non steady-state cornering performance of 6WD/6WS special-purpose vehicles. 6WD vehicles are believed to have good performance on off-the-road maneuvering and to have fail-safe capabilities. But the cornering performances of 6WS vehicles are not well understood in the related literature. In this paper, 6WD/6WS vehicles are modeled as a 18 DOF system which includes non-linear vehicle dynamics, tire models, and kinematic effects. Then the vehicle model is constructed into a simulation program using the MATLAB/SIMULINK so that input/output and vehicle parameters can be changed easily with the modulated approach. Cornering performance of the 6WS vehicle is analyzed for brake steering and pivoting, respectively. Simulation results show that cornering performance depends on the middle-wheel steering as well as front/rear wheel steering. In addition, a new 6WS control law is proposed in order to minimize the sideslip angle. Lane change simulation results demonstrate the advantage of 6WS vehicles with the proposed control law.

The Analysis and Control of Compressed Gas Discharging System (압축가스 방출 유압시스템 해석 및 제어)

  • 장웅락;김정관;한명철;정찬희;박인기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.458-462
    • /
    • 2004
  • The hydraulic system for discharging compressed gas is composed of compressor tank, proportional flow control servo valve, expulsion spool valve and discharging tube. Purpose of this study is to control of expulsion spool valve. First, we analyzed the hydraulic system. The flow control servo valve is modeled as a 2nd order transfer function and friction force of the expulsion spool valve is modeled as nonlinear model with stribeck effect. However, it is difficult to include the flow reaction force in modeling. So, we exchanged from the simplified flow reaction force of the compressed gas affection into the flow analysis code written in FORTRAN code. Our simulation of the oil pressure system for discharging gas used MATLAB/Simulink. So, we realized 'Level -2 S-Function Fortran' to cooperate for MATLAB/Simulink and FORTRAN code. PD controller is selected to control in this system. Simulation results show that with given conditions the controllers give a good tracking performance.

  • PDF

A Study on the Effect of the Pressure Control of Cooperative Control System with Regenerative Brake for a Military SHEV (군용 직렬형 하이브리드 전기 차량을 위한 회생제동 협조제어 시스템의 압력제어 영향에 관한 연구)

  • Jeong, Soonkyu;Choi, Hyunseok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.517-525
    • /
    • 2016
  • In this research, the effect of the pressure control of cooperative control system with regenerative brake for a military series hybrid-electric vehicle was studied. A cooperative control system with regenerative brake was developed to maximize regenerative energy from electric traction motors of the vehicle. However, the pressure control method of the system was modified to solve a time delay problem and it deteriorates the performance of the system. A Simulink model including the hybrid-electric components, the cooperative control system with regenerative brake, and the vehicle dynamics was developed and used to find a solution. The regenerative energy ratio with respect to the whole brake energy was increased in this research from less than 60 % to over 80 %.

Dynamic Simulation and Analysis of the Space Shuttle Main Engine with Artificially Injected Faults

  • Cha, Jihyoung;Ha, Chulsu;Koo, Jaye;Ko, Sangho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.535-550
    • /
    • 2016
  • Securing the safety and the reliability of liquid-propellant rocket engines (LREs) for space vehicles is indispensable as engines consist of many complex components and operate under extremely high energy-dense conditions. Thus, health monitoring has become a mandatory requirement, especially for the reusable LREs that are currently being developed. In this context, a dynamic simulation program based on MATLAB/Simulink was developed in the current research on the Space Shuttle Main Engine (SSME), a partly reusable engine. Then, a series of fault simulations using this program was conducted: at a steady state operating condition (104% Rated Propulsion Level), various simulated fault conditions were artificially injected into the simulation models for the five major valves, the pumps, and the turbines of the SSME. The consequent effects due to each fault were analyzed based on the time responses of the major parameters of the engine. It is believed that this research topic is an essential pre-step for the development of fault detection and diagnosis algorithms for reusable engines in the future.

Study on Experimental Equipment for Anti-Skid Control Logic Test (활주방지로직 시험장치에 대한 연구)

  • Kim, Ho-Yeon;Kang, Chul-Goo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.85-90
    • /
    • 2011
  • To maintain the safety and efficiency of railroad vehicles, it is important to understand the working of the brake system with anti-skid control unit (ASCU) for rolling stocks. In this paper, a HILS (Hardware In-the Loop Simulations) system with ASCU hardware (for logic) and a DSP board (for dynamics) is developed to analyze skidding of the Hanvit-200 train during the process of braking. Experimental results are presented for the case that the skid on one of the four wheels is artificially generated using a Simulink model. A convenient GUI is prepared using ControlDesk of dSPACE.

Model Based Design and Validation of Control Systems using Real-time Operating System (실시간 운영체제를 적용한 제어시스템의 모델기반 설계 및 검증)

  • Youn, Jea-Myoung;Ma, Joo-Young;SunWoo, Myoung-Ho;Lee, Woo-Taik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.8-17
    • /
    • 2008
  • This paper presents the Matlab/Simulink-based software-in-the-loop simulation(SILS) environment which is the co-simulator for temporal and functional simulations of control systems. The temporal behavior of a control system is strongly dependent on the implemented software and hardware such as the real-time operating system, the target CPU, and the communication protocol. The proposed SILS abstracts the system with tasks, task executions, real-time schedulers, and real-time networks close to the implementation. Methods to realize these components in graphical block representations are investigated with Matlab/Simulink, which is most commonly used tool for designing and simulating control algorithms in control engineering. In order to achieve a seamless development from SILS to rapid control prototyping (RCP), the SILS block-set is designed to support automatic code generation without tool changes and block modifications.