• Title/Summary/Keyword: Simulator Bridge

Search Result 56, Processing Time 0.025 seconds

A study on the development of a ship-handling simulation system based on actual maritime traffic conditions (선박조종 시뮬레이터를 이용한 연안 해역 디지털 트윈 구축에 연구)

  • Eunkyu Lee;Jae-Seok Han;Kwang-Hyun Ko;Eunbi Park;Kyunghun Park;Seong-Phil Ann
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.200-201
    • /
    • 2023
  • Digital twin technology is used in various fields as a method of creating a virtual world to minimize the cost of solving problems in the real world, and is also actively used in the maritime field, such as large-scale systems such as ships and offshore plants. In this paper, we tried to build a digital twin of coastal waters using a ship-handling simulator. The digital twin of the coastal waters developed in this way can be used to safely manage Korea's coastal waters, where maritime traffic is complicated, by providing a actual maritime traffic data. It can be usefully used to develop and advance technologies related to maritime autonomous surface ships and intelligent maritime traffic information services in coastal waters. In addition, it can be used as a 3D-based monitoring equipment for areas where physical monitoring is difficult but real-time maritime traffic monitoring is necessary, and can provide functions to safely manage maritime traffic situations such as aerial views of ports/control areas, bridge views/blind sector views of ships in operation.

  • PDF

Design of the Noise Margin Improved High Voltage Gate Driver IC for 300W Resonant Half-Bridge Converter (잡음 내성이 향상된 300W 공진형 하프-브리지 컨버터용 고전압 구동 IC 설계)

  • Song, Ki-Nam;Park, Hyun-Il;Lee, Yong-An;Kim, Hyoung-Woo;Kim, Ki-Hyun;Seo, Kil-Soo;Han, Seok-Bung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.10
    • /
    • pp.7-14
    • /
    • 2008
  • In this paper, we designed the HVIC(High Voltage Gate Driver IC) which has improved noise immunity characteristics and high driving capability. Operating frequency and input voltage range of the designed HVIC is up to 500kHz and 650V, respectively. Noise protection and schmitt trigger circuit is included in the high-side level shifter of designed IC which has very high dv/dt noise immunity characteristic(up to 50V/ns). And also, rower dissipation of high-side level shifter with designed short-pulse generation circuit decreased more that 40% compare with conventional circuit. In addition, designed HVIC includes protection and UVLO circuit to prevent cross-conduction of power switch and sense power supply voltage of driving section, respectively. Protection and UVLO circuit can improve the stability of the designed HVIC. Spectre and Pspice circuit simulator were used to verify the operating characteristics of the designed HVIC.

A Study on the Electrical Characteristic of SCR-based Dual-Directional ESD Protection Circuit According to Change of Design Parameters (SCR 기반 양방향성 ESD보호회로의 설계 변수 변화에 따른 전기적 특성의 관한 연구)

  • Kim, Hyun-Young;Lee, Chung-Kwang;Nam, Jong-Ho;Kwak, Jae-Chang;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.265-270
    • /
    • 2015
  • In this paper, we proposed a dual-directional SCR (silicon-controlled rectifier) based ESD (electrostatic discharge) protection circuit. In comparison with conventional SCR, this ESD protection circuit can provide an effective protection against ESD pulses in the two opposite directions, so the ESD protection circuit can be discharged in two opposite direction. The proposed circuit has a higher holding voltage characteristic than conventional SCR. These characteristic enable to have latch-up immunity under normal operating conditions as well as superior full chip ESD protection. it was analyzed to figure out electrical characteristics in term of individual design parameters. They are investigated by using the Synopsys TCAD simulator. In the simulation results, it has trigger voltage of 6.5V and holding voltage increased with different design parameters. The holding voltage of the proposed circuit changes from 2.1V to 6.3V and the proposed circuit has symmetrical I-V characteristic for positive and negative ESD pulse.

Investigation of the LPG Gas Explosion of a Welding And Cutting Torch at a Construction Site

  • Lee, Su-kyung;Lee, Jung-hoon;Song, Dong-woo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.811-818
    • /
    • 2018
  • A fire and explosion accident caused by a liquefied petroleum gas (LPG) welding and cutting torch gas leak occurred 10 m underground at the site of reinforcement work for bridge columns, killing four people and seriously injuring ten. We conducted a comprehensive investigation into the accident to identify the fundamental causes of the explosion by analyzing the structure of the construction site and the properties of propane, which was the main component of LPG welding and cutting work used at the site. The range between the lower and upper explosion limits of leaking LPG for welding and cutting work was examined using Le Chatelier's formula; the behavior of LPG concentration change, which included dispersion and concentration change, was analyzed using the fire dynamic simulator (FDS). We concluded that the primary cause of the accident was combustible LPG that leaked from a welding and cutting torch and formed a explosion range between the lower and upper limits. When the LPG contacted the flame of the welding and cutting torch, LPG explosion occurred. The LPG explosion power calculation was verified by the blast effect computation program developed by the Department of Defense Explosive Safety Board (DDESB). According to the fire simulation results, we concluded that the welding and cutting torch LPG leak caused the gas explosion. This study is useful for safety management to prevent accidents caused by LPG welding and cutting work at construction sites.

A Study on Power Conversion System for Fuel Cell Controlled by Micro-Processor (마이크로프로세서에 의해 제어되는 연료전지용 전력변환장치에 관한 연구)

  • Kim, Ju-Yong;Jung, Sang-Hwa;Mun, Sang-Pil;Ryu, Jae-Yup;Suh, Ki-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.10-24
    • /
    • 2007
  • In the dissertation, a power conversion system for fuel cell is composed of a PWM inverter with LC filter in order to convert fuel cell voltage to a single phase 220[V]. In addition, new insulated DC-DC converters are proposed in order that fuel cell voltage is boosted to 380[V]. In this paper, it requires smaller components than existing converters, which makes easy control. The proposed DC-DC converter controls output power by the adjustment of phase-shift width using switch $S_5\;and\;S_6$ in the secondary switch which provides 93-97[%] efficiency in the wide range of output voltage. Fuel cell simulator is implemented to show similar output characteristics to actual fuel cell. Appropriate dead time td enables soft switching to the range where the peak value of excitation current in a high frequency transformer is in accordance with current in the primary circuit. Moreover, appropriate setting to serial inductance La reduces communication loss arisen at light-load generator and serge voltage arisen at a secondary switch and serial diode. Finally, TMS320C31 board and EPLD using PWM switching technique to act a single phase full-bridge inverter which is planed to make alternating current suitable for household

Evaluation of Metal Volume and Proton Dose Distribution Using MVCT for Head and Neck Proton Treatment Plan (두경부 양성자 치료계획 시 MVCT를 이용한 Metal Volume 평가 및 양성자 선량분포 평가)

  • Seo, Sung Gook;Kwon, Dong Yeol;Park, Se Joon;Park, Yong Chul;Choi, Byung Ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.25-32
    • /
    • 2019
  • Purpose: The size, shape, and volume of prosthetic appliance depend on the metal artifacts resulting from dental implant during head and neck treatment with radiation. This reduced the accuracy of contouring targets and surrounding normal tissues in radiation treatment plan. Therefore, the purpose of this study is to obtain the images of metal representing the size of tooth through MVCT, SMART-MAR CT and KVCT, evaluate the volumes, apply them into the proton therapy plan, and analyze the difference of dose distribution. Materials and Methods : Metal A ($0.5{\times}0.5{\times}0.5cm$), Metal B ($1{\times}1{\times}1cm$), and Metal C ($1{\times}2{\times}1cm$) similar in size to inlay, crown, and bridge taking the treatments used at the dentist's into account were made with Cerrobend ($9.64g/cm^3$). Metal was placed into the In House Head & Neck Phantom and by using CT Simulator (Discovery CT 590RT, GE, USA) the images of KVCT and SMART-MAR were obtained with slice thickness 1.25 mm. The images of MVCT were obtained in the same way with $RADIXACT^{(R)}$ Series (Accuracy $Precision^{(R)}$, USA). The images of metal obtained through MVCT, SMART-MAR CT, and KVCT were compared in both size of axis X, Y, and Z and volume based on the Autocontour Thresholds Raw Values from the computerized treatment planning equipment Pinnacle (Ver 9.10, Philips, Palo Alto, USA). The proton treatment plan (Ray station 5.1, RaySearch, USA) was set by fusing the contour of metal B ($1{\times}1{\times}1cm$) obtained from the above experiment by each CT into KVCT in order to compare the difference of dose distribution. Result: Referencing the actual sizes, it was appeared: Metal A (MVCT: 1.0 times, SMART-MAR CT: 1.84 times, and KVCT: 1.92 times), Metal B (MVCT: 1.02 times, SMART-MAR CT: 1.47 times, and KVCT: 1.82 times), and Metal C (MVCT: 1.0 times, SMART-MAR CT: 1.46 times, and KVCT: 1.66 times). MVCT was measured most similarly to the actual metal volume. As a result of measurement by applying the volume of metal B into proton treatment plan, the dose of $D_{99%}$ volume was measured as: MVCT: 3094 CcGE, SMART-MAR CT: 2902 CcGE, and KVCT: 2880 CcGE, against the reference 3082 CcGE Conclusion: Overall volume and axes X and Z were most identical to the actual sizes in MVCT and axis Y, which is in the superior-Inferior direction, was regular in length without differences in CT. The best dose distribution was shown in MVCT having similar size, shape, and volume of metal when treating head and neck protons. Thus it is thought that it would be very useful if the contour of prosthetic appliance using MVCT is applied into KVCT for proton treatment plan.