• Title/Summary/Keyword: Simulation study

Search Result 27,293, Processing Time 0.064 seconds

Clinical Usefulness of Virtual Ablation Guided Catheter Ablation of Atrial Fibrillation Targeting Restitution Parameter-Guided Catheter Ablation: CUVIA-REGAB Prospective Randomized Study

  • Young Choi;Byounghyun Lim;Song-Yi Yang;So-Hyun Yang;Oh-Seok Kwon;Daehoon Kim;Yun Gi Kim;Je-Wook Park;Hee Tae Yu;Tae-Hoon Kim;Pil-Sung Yang;Jae-Sun Uhm;Jamin Shim;Sung Hwan Kim;Jung-Hoon Sung;Jong-il Choi;Boyoung Joung;Moon-Hyoung Lee;Young-Hoon Kim;Yong-Seog Oh;Hui-Nam Pak;CUVIA-REGAB Investigators
    • Korean Circulation Journal
    • /
    • v.52 no.9
    • /
    • pp.699-711
    • /
    • 2022
  • Background and Objectives: We investigated whether extra-pulmonary vein (PV) ablation targeting a high maximal slope of the action potential duration restitution curve (Smax) improves the rhythm outcome of persistent atrial fibrillation (PeAF) ablation. Methods: In this open-label, multi-center, randomized, and controlled trial, 178 PeAF patients were randomized with 1:1 ratio to computational modeling-guided virtual Smax ablation (V-Smax) or empirical ablation (E-ABL) groups. Smax maps were generated by computational modeling based on atrial substrate maps acquired during clinical procedures in sinus rhythm. Smax maps were generated during the clinical PV isolation (PVI). The V-Smax group underwent an additional extra-PV ablation after PVI targeting the virtual high Smax sites. Results: After a mean follow-up period of 12.3±5.2 months, the clinical recurrence rates (25.6% vs. 23.9% in the V-Smax and the E-ABL group, p=0.880) or recurrence appearing as atrial tachycardia (11.1% vs. 5.7%, p=0.169) did not differ between the 2 groups. The post-ablation cardioversion rate was higher in the V-Smax group than E-ABL group (14.4% vs. 5.7%, p=0.027). Among antiarrhythmic drug-free patients (n=129), the AF freedom rate was 78.7% in the V-Smax group and 80.9% in the E-ABL group (p=0.776). The total procedure time was longer in the V-Smax group (p=0.008), but no significant difference was found in the major complication rates (p=0.497) between the groups. Conclusions: Unlike a dominant frequency ablation, the computational modeling-guided V-Smax ablation did not improve the rhythm outcome of the PeAF ablation and had a longer procedure time.

Annual Energy Demand Analysis of a Lettuce Growing Plant Factory according to the Environmental Changes (상추 재배 식물공장의 환경변화에 따른 연중 에너지 요구량 분석)

  • Eun Jung Choi;Jaehyun Kim;Sang Min Lee
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.278-284
    • /
    • 2023
  • Recently, a closed-type plant factory has been receiving attention as a advanced agricultural method. It has diverse advantages such as climate-independence, high productivity and stable year-round production. However, high energy cost caused by environmental control system is considered as a challenges of a closed-type plant factory. In order to reduce the energy cost, investigation about energy load which is directly connected to energy consumption needs to be conducted. In this study, energy load changes of a plant factory have been analytically analyzed according to the environmental changes. The target plant factory was a lettuce growing container farm. Firstly, the impact of photoperiod, set temperature and relative humidity change were examined. Under the climate condition of Daejeon in South Korea, increase of photoperiod and set temperature rose a yearly energy demand of a container farm. However, increase of set relative humidity decreased a yearly energy demand. Secondly, the climate environment effect was compared by investigating the energy demand under 9 different climate conditions. As a result, the difference between maximum and minimum value of the yearly energy demand showed 21.7%. Lastly, sensitivity analysis of each parameter (photoperiod, set temperature and relative humidity) has been suggested under 3 different climate conditions. The ratio of heating and cooling demand was varied depending on the climate, so the effect of each parameter became different.

Impacts of Climate Change on Rice Production and Adaptation Method in Korea as Evaluated by Simulation Study (생육모의 연구에 의한 한반도에서의 기후변화에 따른 벼 생산성 및 적응기술 평가)

  • Lee, Chung-Kuen;Kim, Junwhan;Shon, Jiyoung;Yang, Woon-Ho;Yoon, Young-Hwan;Choi, Kyung-Jin;Kim, Kwang-Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.4
    • /
    • pp.207-221
    • /
    • 2012
  • Air temperature in Korea has increased by $1.5^{\circ}C$ over the last 100 years, which is nearly twice the global average rate during the same period. Moreover, it is projected that such change in temperature will continue in the 21st century. The objective of this study was to evaluate the potential impacts of future climate change on the rice production and adaptation methods in Korea. Climate data for the baseline (1971~2000) and the three future climate (2011~2040, 2041~2070, and 2071~2100) at fifty six sites in South Korea under IPCC SRES A1B scenario were used as the input to the rice crop model ORYZA2000. Six experimental schemes were carried out to evaluate the combined effects of climatic warming, $CO_2$ fertilization, and cropping season on rice production. We found that the average production in 2071~2100 would decrease by 23%, 27%, and 29% for early, middle, and middle-late rice maturing type, respectively, when cropping seasons were fixed. In contrast, predicted yield reduction was ~0%, 6%, and 7%, for early, middle, and middle-late rice maturing type, respectively, when cropping seasons were changed. Analysis of variation suggested that climatic warming, $CO_2$ fertilization, cropping season, and rice maturing type contributed 60, 10, 12, and 2% of rice yield, respectively. In addition, regression analysis suggested 14~46 and 53~86% of variations in rice yield were explained by grain number and filled grain ratio, respectively, when cropping season was fixed. On the other hand, 46~78 and 22~53% of variations were explained respectively with changing cropping season. It was projected that sterility caused by high temperature would have no effect on rice yield. As a result, rice yield reduction in the future climate in Korea would resulted from low filled grain ratio due to high growing temperature during grain-filling period because the $CO_2$ fertilization was insufficient to negate the negative effect of climatic warming. However, adjusting cropping seasons to future climate change may alleviate the rice production reduction by minimizing negative effect of climatic warming without altering positive effect of $CO_2$ fertilization, which improves weather condition during the grain-filling period.

Usefulness of Non-coplanar Helical Tomotherapy Using Variable Axis Baseplate (Variable Axis Baseplate를 이용한 Non-coplanar 토모테라피의 유용성)

  • Ha, Jin-Sook;Chung, Yoon-Sun;Lee, Ik-Jae;Shin, Dong-Bong;Kim, Jong-Dae;Kim, Sei-Joon;Jeon, Mi-Jin;Cho, Yoon-Jin;Kim, Ki-Kwang;Lee, Seul-Bee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.1
    • /
    • pp.31-39
    • /
    • 2011
  • Purpose: Helical Tomotherapy allows only coplanar beam delivery because it does not allow couch rotation. We investigated a method to introduce non-coplanar beam by tilting a patient's head for Tomotherapy. The aim of this study was to compare intrafractional movement during Tomotherapy between coplanar and non-coplanar patient's setup. Materials and Methods: Helical Tomotherapy was used for treating eight patients with intracranial tumor. The subjects were divided into three groups: one group (coplanar) of 2 patients who lay on S-plate with supine position and wore thermoplastic mask for immobilizing the head, second group (non-coplanar) of 3 patients who lay on S-plate with supine position and whose head was tilted with Variable Axis Baseplate and wore thermoplastic mask, and third group (non-coplanar plus mouthpiece) of 3 patients whose head was tilted and wore a mouthpiece immobilization device and thermoplastic mask. The patients were treated with Tomotherapy after treatment planning with Tomotherapy Planning System. Megavoltage computed tomography (MVCT) was performed before and after treatment, and the intrafractional error was measured with lateral(X), longitudinal(Y), vertical(Z) direction movements and vector ($\sqrt{x^2+y^2+z^2}$) value for assessing overall movement. Results: Intrafractional error was compared among three groups by taking the error of MVCT taken after the treatment. As the correction values (X, Y, Z) between MVCT image taken after treatment and CT-simulation image are close to zero, the patient movement is small. When the mean values of movement of each direction for non-coplanar setup were compared with coplanar setup group, X-axis movement was decreased by 13%, but Y-axis and Z-axis movement were increased by 109% and 88%, respectively. Movements of Y-axis and Z-axis with non-coplanar setup were relatively greater than that of X-axis since a tilted head tended to slip down. The mean of X-axis movement of the group who used a mouthpiece was greater by 9.4% than the group who did not use, but the mean of Y-axis movement was lower by at least 64%, and the mean of Z-axis was lower by at least 67%, and the mean of Z-axis was lower by at least 67%, and the vector was lower by at least 59% with the use of a mouthpiece. Among these 8 patients, one patient whose tumor was located on left frontal lobe and left basal ganglia received reduced radiation dose of 38% in right eye, 23% in left eye, 30% in optic chiasm, 27% in brain stem, and 8% in normal brain with non-coplanar method. Conclusion: Tomotherapy only allows coplanar delivery of IMRT treatment. To complement this shortcoming, Tomotherapy can be used with non-coplanar method by artificially tilting the patient's head and using an oral immobilization instrument to minimize the movement of patient, when intracranial tumor locates near critical organs or has to be treated with high dose radiation.

  • PDF

Evaluation of the Positional Uncertainty of a Liver Tumor using 4-Dimensional Computed Tomography and Gated Orthogonal Kilovolt Setup Images (사차원전산화단층촬영과 호흡연동 직각 Kilovolt 준비 영상을 이용한 간 종양의 움직임 분석)

  • Ju, Sang-Gyu;Hong, Chae-Seon;Park, Hee-Chul;Ahn, Jong-Ho;Shin, Eun-Hyuk;Shin, Jung-Suk;Kim, Jin-Sung;Han, Young-Yih;Lim, Do-Hoon;Choi, Doo-Ho
    • Radiation Oncology Journal
    • /
    • v.28 no.3
    • /
    • pp.155-165
    • /
    • 2010
  • Purpose: In order to evaluate the positional uncertainty of internal organs during radiation therapy for treatment of liver cancer, we measured differences in inter- and intra-fractional variation of the tumor position and tidal amplitude using 4-dimentional computed radiograph (DCT) images and gated orthogonal setup kilovolt (KV) images taken on every treatment using the on board imaging (OBI) and real time position management (RPM) system. Materials and Methods: Twenty consecutive patients who underwent 3-dimensional (3D) conformal radiation therapy for treatment of liver cancer participated in this study. All patients received a 4DCT simulation with an RT16 scanner and an RPM system. Lipiodol, which was updated near the target volume after transarterial chemoembolization or diaphragm was chosen as a surrogate for the evaluation of the position difference of internal organs. Two reference orthogonal (anterior and lateral) digital reconstructed radiograph (DRR) images were generated using CT image sets of 0% and 50% into the respiratory phases. The maximum tidal amplitude of the surrogate was measured from 3D conformal treatment planning. After setting the patient up with laser markings on the skin, orthogonal gated setup images at 50% into the respiratory phase were acquired at each treatment session with OBI and registered on reference DRR images by setting each beam center. Online inter-fractional variation was determined with the surrogate. After adjusting the patient setup error, orthogonal setup images at 0% and 50% into the respiratory phases were obtained and tidal amplitude of the surrogate was measured. Measured tidal amplitude was compared with data from 4DCT. For evaluation of intra-fractional variation, an orthogonal gated setup image at 50% into the respiratory phase was promptly acquired after treatment and compared with the same image taken just before treatment. In addition, a statistical analysis for the quantitative evaluation was performed. Results: Medians of inter-fractional variation for twenty patients were 0.00 cm (range, -0.50 to 0.90 cm), 0.00 cm (range, -2.40 to 1.60 cm), and 0.00 cm (range, -1.10 to 0.50 cm) in the X (transaxial), Y (superior-inferior), and Z (anterior-posterior) directions, respectively. Significant inter-fractional variations over 0.5 cm were observed in four patients. Min addition, the median tidal amplitude differences between 4DCTs and the gated orthogonal setup images were -0.05 cm (range, -0.83 to 0.60 cm), -0.15 cm (range, -2.58 to 1.18 cm), and -0.02 cm (range, -1.37 to 0.59 cm) in the X, Y, and Z directions, respectively. Large differences of over 1 cm were detected in 3 patients in the Y direction, while differences of more than 0.5 but less than 1 cm were observed in 5 patients in Y and Z directions. Median intra-fractional variation was 0.00 cm (range, -0.30 to 0.40 cm), -0.03 cm (range, -1.14 to 0.50 cm), 0.05 cm (range, -0.30 to 0.50 cm) in the X, Y, and Z directions, respectively. Significant intra-fractional variation of over 1 cm was observed in 2 patients in Y direction. Conclusion: Gated setup images provided a clear image quality for the detection of organ motion without a motion artifact. Significant intra- and inter-fractional variation and tidal amplitude differences between 4DCT and gated setup images were detected in some patients during the radiation treatment period, and therefore, should be considered when setting up the target margin. Monitoring of positional uncertainty and its adaptive feedback system can enhance the accuracy of treatments.

The Measurement of Sensitivity and Comparative Analysis of Simplified Quantitation Methods to Measure Dopamine Transporters Using [I-123]IPT Pharmacokinetic Computer Simulations ([I-123]IPT 약역학 컴퓨터시뮬레이션을 이용한 민감도 측정 및 간편화된 운반체 정량분석 방법들의 비교분석 연구)

  • Son, Hye-Kyung;Nha, Sang-Kyun;Lee, Hee-Kyung;Kim, Hee-Joung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.31 no.1
    • /
    • pp.19-29
    • /
    • 1997
  • Recently, [I-123]IPT SPECT has been used for early diagnosis of Parkinson's patients(PP) by imaging dopamine transporters. The dynamic time activity curves in basal ganglia(BG) and occipital cortex(OCC) without blood samples were obtained for 2 hours. These data were then used to measure dopamine transporters by operationally defined ratio methods of (BG-OCC)/OCC at 2 hrs, binding potential $R_v=k_3/k_4$ using graphic method or $R_A$= (ABBG-ABOCC)/ABOCC for 2 hrs, where ABBG represents accumulated binding activity in basal ganglia(${\int}^{120min}_0$ BG(t)dt) and ABOCC represents accumulated binding activity in occipital cortex(${\int}^{120min}_0$ OCC(t)dt). The purpose of this study was to examine the IPT pharmacokinetics and investigate the usefulness of simplified methods of (BG-OCC)/OCC, $R_A$, and $R_v$ which are often assumed that these values reflect the true values of $k_3/k_4$. The rate constants $K_1,\;k_2\;k_3$ and $k_4$ to be used for simulations were derived using [I-123]IPT SPECT and aterialized blood data with a standard three compartmental model. The sensitivities and time activity curves in BG and OCC were computed by changing $K_l$ and $k_3$(only BG) for every 5min over 2 hours. The values (BG-OCC)/OCC, $R_A$, and $R_v$ were then computed from the time activity curves and the linear regression analysis was used to measure the accuracies of these methods. The late constants $K_l,\;k_2\;k_3\;k_4$ at BG and OCC were $1.26{\pm}5.41%,\;0.044{\pm}19.58%,\;0.031{\pm}24.36%,\;0.008{\pm}22.78%$ and $1.36{\pm}4.76%,\;0.170{\pm}6.89%,\;0.007{\pm}23.89%,\;0.007{\pm}45.09%$, respectively. The Sensitivities for ((${\Delta}S/S$)/(${\Delta}k_3/k_3$)) and ((${\Delta}S/S$)/(${\Delta}K_l/K_l$)) at 30min and 120min were measured as (0.19, 0.50) and (0.61, 0,23), respectively. The correlation coefficients and slopes of ((BG-OCC)/OCC, $R_A$, and $R_v$) with $k_3/k_4$ were (0.98, 1.00, 0.99) and (1.76, 0.47, 1.25), respectively. These simulation results indicate that a late [I-123]IPT SPECT image may represent the distribution of the dopamine transporters. Good correlations were shown between (3G-OCC)/OCC, $R_A$ or $R_v$ and true $k_3/k_4$, although the slopes between them were not unity. Pharmacokinetic computer simulations may be a very useful technique in studying dopamine transporter systems.

  • PDF

Usefulness of Pulsatile Flow Aortic Aneurysm Phantoms for Stent-graft Placement (스텐트그라프트 장치술을 위한 대동맥류 혈류 팬텀의 유용성)

  • Kim, Tae-Hyung;Ko, Gi-Young;Song, Ho-Young;Park, In-Kook;Shin, Ji-Hoon;Lim, Jin-Oh;Kim, Jin-Hyoung;Choi, Eu-Gene K.
    • Journal of radiological science and technology
    • /
    • v.30 no.3
    • /
    • pp.205-212
    • /
    • 2007
  • To evaluate the feasibility and efficacy of a pulsatile aortic aneurysm phantoms for in-vitro study. The phantoms consisted of a pulsating motor part(heart part) and an aortic aneurysm part, which mimicked true physiologic conditions. The heart part was created from a high-pressured water pump and a pulsatile flow solenoid valve for the simulation of aortic flow. The aortic aneurysm part was manufactured from paper clay, which was placed inside a acrylic plastic square box, where liquid silicone was poured. After the silicone was formed, the clay was removed, and a silicone tube was used to connect the heart and aneurysm part. We measured the change in pressure as related to the opening time(pulse rate, Kruskal-Wallis method) and pressure before and after the stent-graft implantation(n = 5, Wilcoxon's signed ranks test). The changes in blood pressures according to pulse rate were all statistically significant(p<0.05). The systolic/diastolic pressures at the proximal aorta, the aortic aneurysm, and the distal aorta of the model were $157.80{\pm}1.92/130.20{\pm}1.92$, $159.40{\pm}1.14/134.00{\pm}2.92$, and $147.20{\pm}1.480/129.60{\pm}2.70\;mmHg$, respectively, when the pulse rate was 0.5 beat/second. The pressures changed to $161.40{\pm}1.34/90.20{\pm}1.64$, $175.00{\pm}1.58/93.00{\pm}1.58$, and $176.80{\pm}1.48/90.80{\pm}1.92\;mmHg$, respectively, when the pulse rate was 1.0 beat/second, and $159.40{\pm}1.82/127.20{\pm}1.48$, $166.60{\pm}1.67/138.00{\pm}1.87$, and $161.00{\pm}1.22/135.40{\pm}1.67\;mmHg$, respectively, when it was 1.5 beat/second. When pulse rate was set at 1.0 beat/second, the pressures were $143.60{\pm}1.67/90.20{\pm}1.64$, $147.20{\pm}1.92/84.60{\pm}1.82$, and $137.40{\pm}1.52/88.80{\pm}1.64\;mmHg$ after stent-graft implantation. The changes of pressure before and after stent-graft implantation were statistically significant(p<0.05) except the diastolic pressures at the proximal(p =1.00) and distal aorta(p=0.157). The aortic aneurysm phantoms seems to be useful for the evaluation of the efficacy of stent-graft before animal or clinical studies because of its easy reproducibility and ability to display a wide range of pressures.

  • PDF

Dose verification for Gated Volumetric Modulated Arc Therapy according to Respiratory period (호흡연동 용적변조 회전방사선치료에서 호흡주기에 따른 선량전달 정확성 검증)

  • Jeon, Soo Dong;Bae, Sun Myung;Yoon, In Ha;Kang, Tae Young;Baek, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.137-147
    • /
    • 2014
  • Purpose : The purpose of this study is to verify the accuracy of dose delivery according to the patient's breathing cycle in Gated Volumetric Modulated Arc Therapy Materials and Methods : TrueBeam STxTM(Varian Medical System, Palo Alto, CA) was used in this experiment. The Computed tomography(CT) images that were acquired with RANDO Phantom(Alderson Research Laboratories Inc. Stamford. CT, USA), using Computerized treatment planning system(Eclipse 10.0, Varian, USA), were used to create VMAT plans using 10MV FFF with 1500 cGy/fx (case 1, 2, 3) and 220 cGy/fx(case 4, 5, 6) of doserate of 1200 MU/min. The regular respiratory period of 1.5, 2.5, 3.5 and 4.5 sec and the patients respiratory period of 2.2 and 3.5 sec were reproduced with the $QUASAR^{TM}$ Respiratory Motion Phantom(Modus Medical Devices Inc), and it was set up to deliver radiation at the phase mode between the ranges of 30 to 70%. The results were measured at respective respiratory conditions by a 2-Dimensional ion chamber array detector(I'mRT Matrixx, IBA Dosimetry, Germany) and a MultiCube Phantom(IBA Dosimetry, Germany), and the Gamma pass rate(3 mm, 3%) were compared by the IMRT analysis program(OmniPro I'mRT system software Version 1.7b, IBA Dosimetry, Germany) Results : The gamma pass rates of Case 1, 2, 3, 4, 5 and 6 were the results of 100.0, 97.6, 98.1, 96.3, 93.0, 94.8% at a regular respiratory period of 1.5 sec and 98.8, 99.5, 97.5, 99.5, 98.3, 99.6% at 2.5 sec, 99.6, 96.6, 97.5, 99.2, 97.8, 99.1% at 3.5 sec and 99.4, 96.3, 97.2, 99.0, 98.0, 99.3% at 4.5 sec, respectively. When a patient's respiration was reproduced, 97.7, 95.4, 96.2, 98.9, 96.2, 98.4% at average respiratory period of 2.2 sec, and 97.3, 97.5, 96.8, 100.0, 99.3, 99.8% at 3.5 sec, respectively. Conclusion : The experiment showed clinically reliable results of a Gamma pass rate of 95% or more when 2.5 sec or more of a regular breathing period and the patient's breathing were reproduced. While it showed the results of 93.0% and 94.8% at a regular breathing period of 1.5 sec of Case 5 and 6, it could be confirmed that the accurate dose delivery could be possible on the most respiratory conditions because based on the results of 100 patients's respiratory period analysis as no one sustained a respiration of 1.5 sec. But, pretreatment dose verification should be precede because we can't exclude the possibility of error occurrence due to extremely short respiratory period, also a training at the simulation and careful monitoring are necessary for a patient to maintain stable breathing. Consequently, more reliable and accurate treatments can be administered.

An Ontology Model for Public Service Export Platform (공공 서비스 수출 플랫폼을 위한 온톨로지 모형)

  • Lee, Gang-Won;Park, Sei-Kwon;Ryu, Seung-Wan;Shin, Dong-Cheon
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.149-161
    • /
    • 2014
  • The export of domestic public services to overseas markets contains many potential obstacles, stemming from different export procedures, the target services, and socio-economic environments. In order to alleviate these problems, the business incubation platform as an open business ecosystem can be a powerful instrument to support the decisions taken by participants and stakeholders. In this paper, we propose an ontology model and its implementation processes for the business incubation platform with an open and pervasive architecture to support public service exports. For the conceptual model of platform ontology, export case studies are used for requirements analysis. The conceptual model shows the basic structure, with vocabulary and its meaning, the relationship between ontologies, and key attributes. For the implementation and test of the ontology model, the logical structure is edited using Prot$\acute{e}$g$\acute{e}$ editor. The core engine of the business incubation platform is the simulator module, where the various contexts of export businesses should be captured, defined, and shared with other modules through ontologies. It is well-known that an ontology, with which concepts and their relationships are represented using a shared vocabulary, is an efficient and effective tool for organizing meta-information to develop structural frameworks in a particular domain. The proposed model consists of five ontologies derived from a requirements survey of major stakeholders and their operational scenarios: service, requirements, environment, enterprise, and county. The service ontology contains several components that can find and categorize public services through a case analysis of the public service export. Key attributes of the service ontology are composed of categories including objective, requirements, activity, and service. The objective category, which has sub-attributes including operational body (organization) and user, acts as a reference to search and classify public services. The requirements category relates to the functional needs at a particular phase of system (service) design or operation. Sub-attributes of requirements are user, application, platform, architecture, and social overhead. The activity category represents business processes during the operation and maintenance phase. The activity category also has sub-attributes including facility, software, and project unit. The service category, with sub-attributes such as target, time, and place, acts as a reference to sort and classify the public services. The requirements ontology is derived from the basic and common components of public services and target countries. The key attributes of the requirements ontology are business, technology, and constraints. Business requirements represent the needs of processes and activities for public service export; technology represents the technological requirements for the operation of public services; and constraints represent the business law, regulations, or cultural characteristics of the target country. The environment ontology is derived from case studies of target countries for public service operation. Key attributes of the environment ontology are user, requirements, and activity. A user includes stakeholders in public services, from citizens to operators and managers; the requirements attribute represents the managerial and physical needs during operation; the activity attribute represents business processes in detail. The enterprise ontology is introduced from a previous study, and its attributes are activity, organization, strategy, marketing, and time. The country ontology is derived from the demographic and geopolitical analysis of the target country, and its key attributes are economy, social infrastructure, law, regulation, customs, population, location, and development strategies. The priority list for target services for a certain country and/or the priority list for target countries for a certain public services are generated by a matching algorithm. These lists are used as input seeds to simulate the consortium partners, and government's policies and programs. In the simulation, the environmental differences between Korea and the target country can be customized through a gap analysis and work-flow optimization process. When the process gap between Korea and the target country is too large for a single corporation to cover, a consortium is considered an alternative choice, and various alternatives are derived from the capability index of enterprises. For financial packages, a mix of various foreign aid funds can be simulated during this stage. It is expected that the proposed ontology model and the business incubation platform can be used by various participants in the public service export market. It could be especially beneficial to small and medium businesses that have relatively fewer resources and experience with public service export. We also expect that the open and pervasive service architecture in a digital business ecosystem will help stakeholders find new opportunities through information sharing and collaboration on business processes.

Radiation Therapy Using M3 Wax Bolus in Patients with Malignant Scalp Tumors (악성 두피 종양(Scalp) 환자의 M3 Wax Bolus를 이용한 방사선치료)

  • Kwon, Da Eun;Hwang, Ji Hye;Park, In Seo;Yang, Jun Cheol;Kim, Su Jin;You, Ah Young;Won, Young Jinn;Kwon, Kyung Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.75-81
    • /
    • 2019
  • Purpose: Helmet type bolus for 3D printer is being manufactured because of the disadvantages of Bolus materials when photon beam is used for the treatment of scalp malignancy. However, PLA, which is a used material, has a higher density than a tissue equivalent material and inconveniences occur when the patient wears PLA. In this study, we try to treat malignant scalp tumors by using M3 wax helmet with 3D printer. Methods and materials: For the modeling of the helmet type M3 wax, the head phantom was photographed by CT, which was acquired with a DICOM file. The part for helmet on the scalp was made with Helmet contour. The M3 Wax helmet was made by dissolving paraffin wax, mixing magnesium oxide and calcium carbonate, solidifying it in a PLA 3D helmet, and then eliminated PLA 3D Helmet of the surface. The treatment plan was based on Intensity-Modulated Radiation Therapy (IMRT) of 10 Portals, and the therapeutic dose was 200 cGy, using Analytical Anisotropic Algorithm (AAA) of Eclipse. Then, the dose was verified by using EBT3 film and Mosfet (Metal Oxide Semiconductor Field Effect Transistor: USA), and the IMRT plan was measured 3 times in 3 parts by reproducing the phantom of the head human model under the same condition with the CT simulation room. Results: The Hounsfield unit (HU) of the bolus measured by CT was $52{\pm}37.1$. The dose of TPS was 186.6 cGy, 193.2 cGy and 190.6 cGy at the M3 Wax bolus measurement points of A, B and C, and the dose measured three times at Mostet was $179.66{\pm}2.62cGy$, $184.33{\pm}1.24cGy$ and $195.33{\pm}1.69cGy$. And the error rates were -3.71 %, -4.59 %, and 2.48 %. The dose measured with EBT3 film was $182.00{\pm}1.63cGy$, $193.66{\pm}2.05cGy$ and $196{\pm}2.16cGy$. The error rates were -2.46 %, 0.23 % and 2.83 %. Conclusions: The thickness of the M3 wax bolus was 2 cm, which could help the treatment plan to be established by easily lowering the dose of the brain part. The maximum error rate of the scalp surface dose was measured within 5 % and generally within 3 %, even in the A, B, C measurements of dosimeters of EBT3 film and Mosfet in the treatment dose verification. The making period of M3 wax bolus is shorter, cheaper than that of 3D printer, can be reused and is very useful for the treatment of scalp malignancies as human tissue equivalent material. Therefore, we think that the use of casting type M3 wax bolus, which will complement the making period and cost of high capacity Bolus and Compensator in 3D printer, will increase later.