DOI QR코드

DOI QR Code

Impacts of Climate Change on Rice Production and Adaptation Method in Korea as Evaluated by Simulation Study

생육모의 연구에 의한 한반도에서의 기후변화에 따른 벼 생산성 및 적응기술 평가

  • 이충근 (농촌진흥청 국립식량과학원) ;
  • 김준환 (농촌진흥청 국립식량과학원) ;
  • 손지영 (농촌진흥청 국립식량과학원) ;
  • 양운호 (농촌진흥청 국립식량과학원) ;
  • 윤영환 (농촌진흥청 국립식량과학원) ;
  • 최경진 (농촌진흥청 국립식량과학원) ;
  • 김광수 (서울대학교 농업생명과학대학)
  • Received : 2012.10.15
  • Accepted : 2012.11.26
  • Published : 2012.12.30

Abstract

Air temperature in Korea has increased by $1.5^{\circ}C$ over the last 100 years, which is nearly twice the global average rate during the same period. Moreover, it is projected that such change in temperature will continue in the 21st century. The objective of this study was to evaluate the potential impacts of future climate change on the rice production and adaptation methods in Korea. Climate data for the baseline (1971~2000) and the three future climate (2011~2040, 2041~2070, and 2071~2100) at fifty six sites in South Korea under IPCC SRES A1B scenario were used as the input to the rice crop model ORYZA2000. Six experimental schemes were carried out to evaluate the combined effects of climatic warming, $CO_2$ fertilization, and cropping season on rice production. We found that the average production in 2071~2100 would decrease by 23%, 27%, and 29% for early, middle, and middle-late rice maturing type, respectively, when cropping seasons were fixed. In contrast, predicted yield reduction was ~0%, 6%, and 7%, for early, middle, and middle-late rice maturing type, respectively, when cropping seasons were changed. Analysis of variation suggested that climatic warming, $CO_2$ fertilization, cropping season, and rice maturing type contributed 60, 10, 12, and 2% of rice yield, respectively. In addition, regression analysis suggested 14~46 and 53~86% of variations in rice yield were explained by grain number and filled grain ratio, respectively, when cropping season was fixed. On the other hand, 46~78 and 22~53% of variations were explained respectively with changing cropping season. It was projected that sterility caused by high temperature would have no effect on rice yield. As a result, rice yield reduction in the future climate in Korea would resulted from low filled grain ratio due to high growing temperature during grain-filling period because the $CO_2$ fertilization was insufficient to negate the negative effect of climatic warming. However, adjusting cropping seasons to future climate change may alleviate the rice production reduction by minimizing negative effect of climatic warming without altering positive effect of $CO_2$ fertilization, which improves weather condition during the grain-filling period.

본 연구에서는 작물모형을 이용하여 기후변화에 따른 우리나라의 벼 생산성 변화를 분석하고, 기후변화 주요 변동요인인 온도 및 $CO_2$ 농도와 적응수단인 재배시기가 기후변화에 따른 벼 생산성 변화에 미치는 영향을 분석하고자 하였다. 작물모형은 영화수 및 임실율 모델을 모델을 도입하고, 종실중 및 등숙율 모듈을 추가하여 벼 수량결정 방법을 개선한 'ORYZA2000'을 사용하였으며, 모델의 입력자료인 품종특성 모수는 벼 생태형별로 종생종인 오대벼, 중생종인 화성벼, 중만생종인 일품벼의 품종특성 모수를 사용하였으나 발육속도 품종특성 모수는 수정하여 사용하였다. 생육모의 지역은 기상청 소속 기상대와 관측소가 소재하는 지역 중에 30년 이상 기상관측자료를 보유하고 있는 56개 지역을 북부, 중부, 남부의 3개 기후지대로 구분하여 분석하였으며, 기후변화에 따른 재배시기 조정여부는 최적파종기를 기준으로 설정하였는데, 출수 후 40일간의 평균온도가 22.5가 되는 파종기를 지역별 최적파종기로 설정하였다. 기상자료는 1981~2010년을 기준년도로 하여 기상연구소에서 제작한 2011~2100년 기간의 3개 평년(2011~2040, 2041~2070, 2071~2100)의 A1B 기후시나리오에 근거하여 일별 기후자료로 작성하였으며, 생육모의 조건은 기준년도(1981~2010)를 기준으로 온도 및 $CO_2$ 농도만 변화를 주거나 기후변화에 따라 온도, $CO_2$ 농도 및 재배시기 등 다양한 변화를 주었다. 생육모의 결과 기준년도(1981~2010)를 기준으로 온도만 변화를 주었을 경우 $1^{\circ}C$ 온도 상승에 따라 벼 수량은 6.7~10.6%까지 감소하였으며, $CO_2$ 농도만 변화를 주었을 때는 100ppm $CO_2$ 농도 증가에 따라 1.0~2.7% 증가하였다. 벼 생산성은 벼 생태형 및 기후지대별로 다소 차이가 있었다. 재배시기를 고정하였을 때 기후변화에 따른 벼 수량의 증감율은 조생종에서 -0.3~-23.4, 중생종에서 -1.9~-27.3, 중만생종에서 -1.7~-28.6%이었으며, 재배시기를 조정하였을 때는 조생종에서 3.3~-0.2, 중생종에서 1.8~-5.9, 중만생종에서 2.3~-7.4%로 조중생종에 비해 중만생종의 수량 감소율이 컸으며, 재배시기 조정여부에 따른 벼 생산성 변화의 차이가 컸다. 기상환경 및 재배 요인 중 기후변화에 따른 벼 생산성 변화에 대한 기여도는 기후온난화가 59.8%로 가장 크며, 재배시기 11.8, $CO_2$ 비료효과 9.7, 벼 생태형 1.7%의 순이었다. 온도와 재배시기의 상호작용 효과는 1.5%이었으며, 그 외 모든 상호작용 효과는 1% 이내로 생산성 변화에 거의 영향을 주지 못하였다. 수량관련 생육형질 중 기후변화에 따른 벼 생산성에 대한 기여도는 재배시기가 고정되었을 경우 영화수가 13.5~45.8%, 등숙율이 53.1~86.2%였으며, 재배시기를 변경할 경우 영화수는 46.2~78.3%, 등숙율은 21.6~53.4%로 재배시기 여부에 따른 수량관련 생육형질의 기여도에 큰 차이를 보였으며, 벼 생태형간에도 다소 차이가 있었다. 그러나 임실율은 벼 수량에 거의 영향을 주지 못했다.

Keywords

References

  1. Bachelet, D., J. Kern, and M. Tolg, 1995: Balancing the rice carbon budget in China using spatially-distributed data. Ecological Modelling 79 (1), 167-177. https://doi.org/10.1016/0304-3800(94)00031-C
  2. Baker, J. T., 2004: Yield responses of southern US rice cultivars to $CO_{2}$ and temperature. Agricultural and Forest Meteorology 122, 129-137. https://doi.org/10.1016/j.agrformet.2003.09.012
  3. Baker, J. T., L. H. Allen Jr, and K. J. Boote, 1992: Temperature effects on rice at elevated $CO_{2}$ concentration. Journal of Experimental Botany 43, 959-964. https://doi.org/10.1093/jxb/43.7.959
  4. Bouman, B. A. M., M. J. Kropff, T. P. Tuong, M. C. S. Wopereis, H. F. M. ten Berge, and H. H. van Laar, 2001: ORYZA2000: modeling lowland rice. Los Banos (Philippines); International Rice Research Institute, and Wageningen: Wageningen University and Research Centre. 235p.
  5. Chung, U., K. S. Cho, and B. W. Lee, 2006: Evaluation of site-specific potential for rice production in Korea under the changing climate. Korean Journal of Agricultural and Forest Meteorology 8(4), 229-241. (in Korean with English abstract)
  6. Cui, R. X., and B. W. Lee, 2002: Spikelet number estimation model using nitrogen nutrition status and biomass at panicle initiation and heading stage of rice. Korean Journal of Crop Science 47(5), 390-394. (in Korean with English abstract)
  7. Jagadish, S. V. K., P. Q. Craufurd, and T. R. Wheeler, 2007: High temperature stress and spikelet fertility in rice (Oryza sativa L.). Journal of Experimental Botany 58, 1627- 1635. https://doi.org/10.1093/jxb/erm003
  8. Kim, H. Y., M. Lieffering, K. Kobayashi, M. Okada, M. W. Mitchell, and M. Gumpertz, 2003: Effects of free-air CO2 enrichment and nitrogen supply on the yield of temperate paddy rice crops. Field Crops Research 83, 261-270. https://doi.org/10.1016/S0378-4290(03)00076-5
  9. Kondo, M., 2009: Effect of global warming on rice culture and adoptive strategies. International symposium 'Rice research in the era of global warming' 1-9pp.
  10. Krishnan, P., D. K. Swain, C. Bhaskar, S. K. Nayak, and R. N. Dash, 2007: Impact of elevated $CO_{2}$ and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agriculture, Ecosystems and Environment 122, 233-242. https://doi.org/10.1016/j.agee.2007.01.019
  11. Lee, B. W., J. C. Shin, and J. H. Bong, 1991: Impact of climate change induced by the increasing atmosphere $CO_{2}$ concentration on agroclimatic resources, net primary productivity and rice yield potential in Korea. Korean Journal of Crop Science 36(2), 112-126. (in Korean with English abstract)
  12. Lee, C. K., K. S. Kwak, J. H. Kim, J. Y. Shon, and W. H. Yang, 2011: Impacts of Climate Change and Follow-up Cropping Season Shift on Growing Period and Growing Temperature in Different Rice Maturity Types. Korean Journal of Crop Science 56(3), 233-243. (in Korean with English abstract) https://doi.org/10.7740/kjcs.2011.56.3.233
  13. Mall, R. K., and P. K. Aggarwal, 2002: Climate change and rice yields in diverse agro-environments of India. I. Evaluation of impact assessment models. Climatic Change 52, 315-330. https://doi.org/10.1023/A:1013702105870
  14. Matsui, T., O. S. Namuco, L. H. Ziska, and T. Horie, 1997: Effects of high temperature and $CO_{2}$ concentration on spikelet sterility in indica rice. Field Crops Research 51, 213-219. https://doi.org/10.1016/S0378-4290(96)03451-X
  15. Matthews, R. B., M. J. Kropff, T. Horie, and D. Bachelet, 1997: Simulating the impact of climate change on rice production in Asia and evaluating options for adaptation. Agricultural Systems 54, 399-425. https://doi.org/10.1016/S0308-521X(95)00060-I
  16. NIMR, 2004: The development of regional climate change scenario for the national climate change report.. NIMR Report, 510p.
  17. NIMR, 2007: The application of regional climate change scenario for the national climate change report (III). NIMR Report, 599p.
  18. NIMR, 2011: Cliamate change scenario report for 5th IPCC report. NIMR NIMR Report.
  19. Ohe, I., K. Saitoh, and T. Kuroda, 2007: Effects of high temperature on growth, yield and dry-matter production of rice grown in the paddy field. Plant Production Science 10, 412-422. https://doi.org/10.1626/pps.10.412
  20. Peng, S., H. Jianliang, J. E. Sheehy, R. C. Laza, R. M. Visperas, Z. Xuhua, H. G. S. Centeno, G. S. Khush, and K. G. Cassman, 2004: Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences 101, 9971-9975. https://doi.org/10.1073/pnas.0403720101
  21. Sakai, H., T. Hasegawa, and K. Kobayashi, 2006: Enhancement of rice canopy carbon gain by elevated $CO_{2}$ is sensitive to growth stage and leaf nitrogen concentration. New Phytologist 170, 321-332. https://doi.org/10.1111/j.1469-8137.2006.01688.x
  22. Sasaki, H., T. Hara, S. Ito, N. Uehara, H. Y. Kim, M. Lieffering, M. Okada, and K. Kobayashi, 2007: Effect of free-air $CO_{2}$ enrichment on the storage of carbohydrate fixed at different stages in rice (Oryza sativa L.). Field Crops Research 100, 24-31. https://doi.org/10.1016/j.fcr.2006.05.003
  23. Seo, B. S., D. N. Nguyen, and B. W. Lee, 2010: A simulation model to predict the stability model induced by high temperature during reproductive stage of rice. Proceeding of 40th biological systems simulation conference.
  24. Sheehy, J. E., P. L. Mitchell, and A. B. Ferrer, 2006: Decline in rice grain yields with temperature: Models and correlations can give different estimates. Field Crops Research 98, 151-156. https://doi.org/10.1016/j.fcr.2006.01.001
  25. Shen, S. H., S. B. Yang, Y. X. Zhao, Y. L. Xu, X. Y. Zhao, Z. Y. Wang, J. Liu, and W. W. Zhang, 2011: Simulating the rice yield change in the middle and lower reaches of the Yangtze River under SRES B2 scenario. Acta Ecologica Sinica 31, 40-48. https://doi.org/10.1016/j.chnaes.2010.11.007
  26. Shim, K. M., K. A. Roh, K. H. So, G. Y. Kim, H. C. Jeong, and D. B. Lee, 2010: Assessing impacts of global warming on rice growth and production in Korea. Climate Change Research 1(2), 121-131.
  27. Shim, K. M., D. B. Lee, S. H. Min, G. Y. Kim, H. C. Jeong, S. B. Lee, and K. K. Kang, 2011: Assessing impacts of temperature and carbon dioxide based on A1B climate change scenario on potential yield of winter covered barley in Korea. Climate Change Research 2(4), 317- 331.
  28. Shin, J. C., and M. H. Lee, 1995: Rice production in south Korea under current and future climates. In: R. B. Matthews, M. J. Kropff, D. Bachelet, and H. H. van Laar (Eds). Modeling the impact of climate change on rice production in Asia. IRRI & CAB International, Wallingford, UK. 199-215.
  29. Yang, L. X., J. Y. Huang, H. J. Yang, G. C. Dong, G. Liu, J. G. Zhu, and Y. L. Wang, 2006: Seasonal changes in the effects of free-air $CO_{2}$ enrichment (FACE) on dry matter production and distribution of rice (Oryza sativa L.). Field Crops Research 98, 12-19. https://doi.org/10.1016/j.fcr.2005.11.003
  30. Yoshida, S., 1973a: Effects of temperature on growth of the rice plant (Oryza sativa L.) in a controlled environment. Soil Science and Plant Nutrition 19, 299-310. https://doi.org/10.1080/00380768.1973.10432599
  31. Yoshida, S., 1973b: Effects of $CO_{2}$ enrichment at different stages of panicle development on yield components and yield of rice (Oryza sativa L.). Soil Science and Plant Nutrition 19, 311-316. https://doi.org/10.1080/00380768.1973.10432600
  32. Ziska, L. H., P. A. Manalo, and R. A. Ordonez, 1996: Intraspecific variation in the response of rice (Oryza sativa L.) to increased $CO_{2}$ and temperature: growth and yield response of 17 cultivars. Journal of Experimental Botany 47, 1353-1359. https://doi.org/10.1093/jxb/47.9.1353

Cited by

  1. A meta analysis of the climate change impact on rice yield in South Korea vol.26, pp.2, 2015, https://doi.org/10.7465/jkdi.2015.26.2.355
  2. Agro-climate changes over Northeast Asia in RCP scenarios simulated by WRF vol.36, pp.3, 2016, https://doi.org/10.1002/joc.4423
  3. Analysis of Rainfall-Runoff Characteristics on Bias Correction Method of Climate Change Scenarios vol.31, pp.3, 2015, https://doi.org/10.15681/KSWE.2015.31.3.241
  4. Re-examination of the standard cultivation practices of rice in response to climate change in Korea vol.16, pp.2, 2013, https://doi.org/10.1007/s12892-013-0006-9
  5. Evaluation of regional climate scenario data for impact assessment of climate change on rice productivity in Korea vol.18, pp.4, 2015, https://doi.org/10.1007/s12892-015-0103-z
  6. Requirement Analysis of a System to Predict Crop Yield under Climate Change vol.17, pp.1, 2015, https://doi.org/10.5532/KJAFM.2015.17.1.1
  7. Development and application of a weather data service client for preparation of weather input files to a crop model vol.114, 2015, https://doi.org/10.1016/j.compag.2015.03.021
  8. Predicting potential epidemics of rice diseases in Korea using multi-model ensembles for assessment of climate change impacts with uncertainty information vol.134, pp.1-2, 2016, https://doi.org/10.1007/s10584-015-1503-2
  9. Palatability and Physicochemical Properties in 2001 Yield Increased by 10% than Normal Level in 2000 vol.58, pp.3, 2013, https://doi.org/10.7740/kjcs.2013.58.3.292
  10. Potential Changes in the Distribution of Seven Agricultural Indicator Plant Species in Response to Climate Change at Agroecosystem in South Korea. vol.51, pp.3, 2018, https://doi.org/10.11614/KSL.2018.51.3.221