• Title/Summary/Keyword: Simulation model architecture

Search Result 1,048, Processing Time 0.028 seconds

A Study on the Thermal and Mechanical Characteristic of Hybrid Welded Ship Structure A-grade Steel (선체구조용 A급 강재의 하이브리드 용접에 대한 열 및 역학적 특성에 관한 연구)

  • Oh, Chong-In;Kim, Young-Pyo;Park, Ho-Kyung;Bang, Han-Sur
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.1 s.74
    • /
    • pp.64-68
    • /
    • 2007
  • Recently, there has been considerable research in the field of application of Laser-Arc hybrid welding for superstructures, such as ship-structures, transport vehicles etc. However, the study on heat distribution and welding residual stress of hybrid weld by numerical simulation leaves much to be desired. Therefore, in this study, an optimized welding condition and numerical simulation for hybrid welding, using previous numerical analysis to calculate the heat source for hybrid welding, has been analyzed. For this purpose, fundamental welding phenomena of the hybrid process, using Laser and, is investigated. In order to calculate temperature and residual stress distribution in hybrid welds, a finite element heat source model is developed on the basis of experimental results and characteristics of temperature. Residual stress distribution in hybrid welds are understood from the result of simulation, and compared with the experimental values.

Hull Form Design of Catamaran Type Dredging Vessel Using Model Test and Numerical Simulation (모형실험 및 수치 시뮬레이션을 이용한 쌍동형 준설선의 선형 설계에 관한 연구)

  • Lee Young-Gill;Son Choong-Yul;Jeong Uh-Cheul;Kang Dae-Sun;Jeong Kwang-Leol;Kim Do-Jung
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.2 s.69
    • /
    • pp.66-71
    • /
    • 2006
  • To develope a hull form of catamaran type dredging vessel, resistance characteristics is investigated to find the interaction effect of waves between the two hulls. Re fore body shape is simplified as two dimensional wedge shape for the maintenance and disassembly/assembly. Based on MAC method, numerical simulation is performed in staggered variable mesh system. Re conservation form of Euler equations and continuity equation are applied as governing equations. To verify numerical methods, the wive patterns along the hull surface are compared with the results of model tests. This study is performed as varying wedge shape of the bow and the distance between the two hulls. The wave interaction between two hulls are observed to investigate the relation the resistance performance and the flow characteristics. Suitable hull form and distance between two hulls are discussed.

Implementation of a Simulation Model for a Local Area Network Design

  • Chung, Koo-Don
    • Journal of the military operations research society of Korea
    • /
    • v.11 no.1
    • /
    • pp.55-78
    • /
    • 1985
  • This thesis provides the implementation of a simulation model for a particular Local Area Network (LAN), employs carrier sense multiple access (CSMA) bus architecture, which implements functions of the Stock Point Logistics Integrated Communication Environment (SPLICE). First, specifications of the model are identified based on the given functional specification and operating system design. Then the approach taken for modeling and programming in GPSS is discussed. Finally, the program and results of the simulation run are provided.

  • PDF

A Study on the Lifecycle of the Offshore Plant and the Simulation with DMU and Ergonomics (해양플랜트 수명주기 고찰과 조립 및 인간공학 시뮬레이션 적용에 관한 연구)

  • Lee, Yong-Gil;Woo, Jong-Hun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.4
    • /
    • pp.457-466
    • /
    • 2015
  • In this paper, the academic research on the value chain and the supply chain of offshore business are conducted for the investigation of the offshore business comprehensive configuration. Then, the assembly and ergonomic simulation was conducted for the purpose of advanced validation of offshore project.. With respect to the simulation analysis, the assembly simulation model(w.r.t. drill ship) and the ergonomic simulation model(w.r.t. FPSO) are constructed. Through the assembly simulation of drillship, the production processes could be validated in terms of availability. Also, the problem of topside design of FPSO was found by ergonomic simulation.

Multi-dimensional models for predicting the chloride diffusion in concrete exposed to marine tidal zone: Methodology, Numerical Simulation and Application

  • Yang Ding;Zi-Xi He;Shuang-Xi Zhou
    • Computers and Concrete
    • /
    • v.34 no.2
    • /
    • pp.169-178
    • /
    • 2024
  • To circumvent the constraints of time-consuming experimental methods, numerical simulation can be one of the most effective approaches to investigating chloride diffusion behaviors in concrete. However, except for the effect of the external environments, the transport direction of the chloride cannot be neglected when the concrete is exposed to the marine tidal zone, especially in certain areas of concrete members. In this study, based on Fick's second law, considering the effects of timevarying, chloride binding capacity, concrete stress state, ambient temperature, and relative humidity on chloride diffusion coefficient, the modified one-dimensional, two-dimensional, and three-dimensional novel modified chloride diffusion theoretical models were established through defining the current boundary conditions. The simulated results based on the novel modified multi-dimensional model were compared with the experimental results obtained from some previous pieces of literature. The comparing results showed that the modified multi-dimensional model was well-fitted with experimental data, confirming the high accuracy of the novel modified model. The experimental results in literature showed that the chloride diffusion in the corner area of the concrete structure cannot be simulated by a simple one-dimensional diffusion model, where it is necessary to select a suitable multi-dimensional chloride diffusion model for simulation calculation. Therefore, the novel modified multi-dimensional model established in this study has a stronger applicability for practical engineering.

Simulation Modeling for Human Resource Planning and Management: Revision of Promotion and Aging Chain Model (조직인력관리를 위한 예측 시뮬레이션: 승진 체인 모델의 개선)

  • Oh, Youngmin
    • Korean System Dynamics Review
    • /
    • v.15 no.3
    • /
    • pp.105-141
    • /
    • 2014
  • Human Resource Planning and Management(HRPM) is to make organization efficiently and effectively. Based on Promotion and Aging Chain Model, a revised personnel management prediction simulation is established in terms of mid- and long-term organizational changes, annual budget and personnel strategy including a promotion, aging and laying off for the best personnel architecture in organization. Also, the model is possible to find a solution for increasing the organizational capacity. An empirical application to quasi-governmental organization proceeded to testing and validating the model.

  • PDF

Large Eddy Simulation of Turbulent Flow around a Ship Model Using Message Passing Interface (병렬계산기법을 이용한 선체주위 점성유동장의 LES해석)

  • Choi, Hee-Jong;Yoon, Hyun-Sik;Chun, Ho-Hwan;Kang, Dae-Hwan;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.4 s.71
    • /
    • pp.76-82
    • /
    • 2006
  • The large-eddy simulation(LES) technique, based an a message passing interface method(MPI), was applied to investigate the turbulent flaw phenomena around a ship. The Smagorinski model was used in the present LES simulation to simulate the turbulent flaw around a ship. The SPMD(sidsngle program multiple data) technique was used for parallelization of the program using MPI. All computations were performed an a 24-node PC cluster parallel machine, composed of 2.6 GHz CPU, which had been installed in the Advanced Ship Engineering Research Center(ASERC). Numerical simulations were performed for the Wigley hull, and the Series 60 hull(CB=0.6) using 1/4-, 1/2-, 1- and 2-million grid systems and the computational results had been compared to the experimental ones.

Numerical simulation in time domain to study cross-flow VIV of catenary riser subject to vessel motion-induced oscillatory current

  • Liu, Kun;Wang, Kunpeng;Wang, Yihui;Li, Yulong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.491-500
    • /
    • 2020
  • The present study proposes a time domain model for the Vortex-induced Vibration (VIV) simulation of a catenary riser under the combination of the current and oscillatory flow induced by vessel motion. In this model, the hydrodynamic force of VIV comprises excitation force, hydrodynamic damping and added mass, which are taken as functions of the non-dimensional frequency and amplitude ratio. The non-dimensional frequency is related with the response frequency, natural frequency, lock-in range and the fluid velocity. The relatively oscillatory flow induced by vessel motion is taken into account in the fluid velocity. Considering that the added mass coefficient and the non-dimensional frequency can affect each other, an iterative analysis is conducted at each time step to update the added mass coefficient and the natural frequency. This model is in detail validated against the published test models. The results show that the model can reasonably reflect the effect of the added mass coefficient on the VIV, and can well predict the riser's VIV under stationary and oscillatory flow induced by vessel motion. Based on the model, this study carries out the VIV simulation of a catenary riser with harmonic vessel motion. By analyzing the bending moment near the touchdown point, it is found that under the combination of the ocean current and oscillatory flow the vessel motion may decrease the VIV response, while increase the excited frequencies. In addition, the decreasing rate of the VIV under vessel surge is larger than that under vessel heave at small vessel motion velocity, while the situation becomes opposite at large vessel motion velocity.

A Study on the Construction of Korean Evacuation Load Model (한국형 재실자 피난부하모델 구축에 관한 연구)

  • Lee, Jeong-Soo;Kwon, Heung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5221-5229
    • /
    • 2013
  • This study focused on the construction of Korean Evacuation load Model for reflecting Korean Evacuation behaviors. For the purposes, several evacuation experiments are executed according to the ages, and the level and types of disabilities. We accumulated the data on the evacuation velocity and behavior patterns according the ages, and the level and types of disabilities. From these results, we proposed the Korean Evacuation Load Model and compared with several popular evacuation simulation model such SIMULEX. As results of these studies, we found the possibility of construction of Korean Evacuation Simulation System based on the Korean Evacuation Model including the evacuation velocity and human behaviors.

Simulation study on CFRP strengthened reinforced concrete beam under four-point bending

  • Zhang, Dongliang;Wang, Qingyuan;Dong, Jiangfeng
    • Computers and Concrete
    • /
    • v.17 no.3
    • /
    • pp.407-421
    • /
    • 2016
  • This paper presents numerical modeling of the structural behavior of CFRP (carbon fiber reinforced polymer) strengthened RC (reinforced concrete) beams under four-point bending. Simulation of debonding at the CFRP-concrete interface was focused, as it is the main failure mode of CFRP strengthened RC beams. Here, cohesive layer was employed to model the onset of debonding, which further helps to describe the post debonding behavior of the CFRP strengthened RC beam. In addition, the XFEM approach was applied to investigate the effects of crack localization on strain field on CFRP sheet and rebar. The strains obtained from the XFEM correlate better to the test results than that from CDP (concrete damaged plasticity) model. However, there is a large discrepancy between the experimental and simulated loaddisplacement relationships, which is due to the simplification of concrete constitutive law.