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Implementation of a Simulation Model for
a Local Area Network Design.

Chung, Koodon*

Abstract

This thesis provides the implementation of a simulation model for a particular Local
Area Network (LAN), employs carrier sense multiple access (CSMA) bus architecture,
which implements functions of the Stock Point Logistics Integrated Communication
Environment (SPLICE). First, specifications of the model are identified based on the given
functional specification and operating system design. Then the approach taken for model-
ing and programming in GPSS is discussed. Finally, the program and results of the simula-
tion run are provided.

I. INTRODUCTION

Distributed systems presently represent the fastest growing area of the data processing world,
the university and research environments, and the military community. Such systems consist
of a conglomeration of cooperating, individual computer systems, where each system typically
consists of a micor-or minjcomputer system, software, and various types of peripherals. The
never-ending demands for increased and uninterrupted support at lowest possible cost are the
factors influencing the trend toward such systems. Another major attraction of building large
systems by coupling large nembers of smaller processors is the expectation of a simpler software
design. In a network, it is possible to dedicate some (or all) of the processors to specialized func-
tions, eliminating much of the software complexity associated with large mainframes. Contrary
to software development costs, mini- and microcomputers are becoming less expensive and are,
therefore, being used increasingly for many functions.
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Growing complexity and number of computer resources in.the logistic function, and increasing
demands for interactive operations at the stock points and inventory control points have led to
using a LAN at each site for integration of all computer resources. At this point in the project,
development of a simulation model is required as an effective analytical tool to assist in comparing
various network topologies and protocols (Ref. 2).

This research covers the implementation phase in the development process. In the development
of a simulation model, the following steps are taken.

1. For a LAN which employs Carrier Sense Multiple Acess with Collision Detection (CSMA/
CD), the specifications of a simulation model are discussed based on the functional design
and the operating system design provided.

2. Based on the specifications, the modeling process is described by building GPSS block

. diagrams. '
3. Programming of the model is discussed by converting the block diagram into GPSS V code.

4. A completed program using hypothetical data, and the results of a simulation run is provid-
ed.

II. MODEL DESIGN

A. OVERVIEW OF CSMA/CD
The approach used in CSMA/CD traces its roots back to the radio-based Aloha packet switching
network. In the Aloha network, terminals equipped with packet radios shared a common multiac-
cess radio channel. The attraction of this approach is its simplicity and low cost resulting from
elimination of any central control. As the load increase, however, the maximum possible utiliza-
tion of a pure Aloha channel is only 18 percent (Ref. 6). To eliminate such a degradation of
channel utilization, CSMA/CD employs the following techniques.
1. Carrier Sense _
This scheme forces the station to defer its transmission if any transmission is in progress. There
are three CSMA protocols that can be used to sense the status of channel (Ref. 3).
a. l-persistent CSMA
When a node has data to send, it first listens to the channel to see if another node is transmit-
ting. If the channel is busy, the station waits until the channel becomes idle. When the node
detects an idle channel, it transmits a packet immediately.
b. Nonpersistent CSMA _
Before sending, a node senses the channel. If no other node is sending, the node begins trans-
mitting. However, if the channel is already in use, the node does not continually sense it for the
purpose of seizing it immediately upon detecting the end of the previous transmission. Instead,
it waits a random period of time and repeats the algorithm.
¢. P-persistent CSMA )
It applies to slotted channels and works as follows. When a station becomes ready to send, it
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senses the channel. If it is idle, it transmits with probability p. With a probability q = 1~p, it
defers until the next slot. If that slot is also idle, it either transmits or defers again, with probabi-
lities p and q. This process is repreated until either the packet has been ‘transmitted or another
node has begun transmitting.

With the above schemes, it is still possible that two or more stations will sense that the channel
is idle and begin transmission simultaneously, producing a collision.

2. Collision Detection ‘

Each node continues to monitor the channel during transmission and can provide collision
detection when the signal on the channel does not match its own output. In this case, each station
stops transmitting, uses a collision consensus enforcement procedure to ensure that all other
colliding stations have seen the collision, and then stops. A transmission is then rescheduled for
some later time.

3. Backoff Schemes

To avoid repeated collision, each node waits for a random period of time, There are many
variations to the CSMA/CD scheme [Ref. 11], all of which pertain to the methods of handling
data collisions and retransmission of lost packets. Generally speaking, if there are “N” nodes
wishing to transmit in a given time slot (defined as the round trip end-to-end bus propagation
delay) after a collision, then the most straightforward strategy would be to let each of these
nodes have a probability of 1/N for starting a transmission in this time slot. However, in a decen-
tralized environment, it is virtually impossible for each node to correctly determine this number
“N™. ’

a. Linear-feedback Algorithm

A linear-feedback algorithm tries to estimate the number of nodes wishing to transmit in a
given time slot (round trip end-to-end bus propagation delay) according to the number of colli-
sions encountered in transmitting a packet. For example, if a node attempted to transmit a packet
r times without success then during the re-transmission period, it uses 1/(1+r) as its transmission
probability in each time slot. Apparently, this estimation is too conservative and thoughput
degradation will occur when the system is heavily loaded [Ref. 11].

b. Binary Exponential Backoff Algorithm

To avoid such a throughput degradation, truncated binary exponential backoff algorithm is
used. After r-th collision, all colliding stations set a local parameter, k, a packet at a node will
defer k time slots, where k is randomly selected between 0 and 2**r (i.e.,0<k<2¥**r) until 2**r
reaches a certain limit. With this scheme, as the system becomes more heavily loaded, the nodes
automatically adapt to the load [Ref. 13].

B. MODEL SPECIFICATION

1. Description

Based on the functional specification and the design strategy of the system provided by Refer-
ence 1 and Reference 2, this section describes the specification of a simulation model which
enables us to evaluate the performance of a particular LAN which employs a bus architecture.
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The system is composed of a single contention bus and a set of nodes. The bus provides the
communication path between the nodes in which CSMA/CD protocols are used. Each node con-
tains one or more functional modules (FMs) acting as a server and communication facilities. Since
we are interested in the performance of a LAN rather than the function of each node, the term
“node”’ is used as a server unit instead of “‘functional module”.

Transactions are created at terminals with a priority level and are sent to the system, them,
the transaction visits a set of nodes via inter-node communication. After being served by the nodes
in the predetermined sequence, transacti_ohs leave the system. When a transction arrives, the
system determines the node to be visited by the transaction. Then messages and control signals
required are generated and sent to the destination node. The receiving node creates a process and
puts in into a processor queue until the process gets control of the processor. Once a process gets
the processor, it continues to execute unless interrupted by higher priority process or timer
interrupt. A time quantum is not allocated to each process; however, a process is not allowed to
execute indefinitely. If a process has executed for the maximum allowable processor time, a
system timer interrupts the process. Then the process can go back to the processor queue at its
original priority level [Ref. 2]. After completion of a process the system determines whether
service for the transaction has been completed. If it has been completed the transaction leaves the
system; otherwise the next node to be visted is identified and control signals and messages are
generated. The messages are put into the sending queue until they are transmitted. If the bus is
sensed idle by the node, messages are broadcast and propagates through the bus. A node will try
to complete the transmission of the first message in the sending queue before attempting the
send a second message (if any). The receiving node will transmit a positive acknowledgement if the
transmission was successful. If the sending node detected a collision or if a positive acknowledge-
ment had not been received over some period time, the transmission will be rescheduled using the
backoff algorithm as described in the last chapter. The system repeats the above procedure until
the service for the transaction has completed.

After visiting a set of nodes, the transaction leaves the model. Figure I shows simplified transac-
tion flow in the model.

2. Model Assumptions

1. The oneline, oneserver queuing system is employed for the processor at each node.

2. Transaction arrivals are random and characterized by the Poisson distribution. This means
the interarrival time is exponentially distributed.

3. Since no specifications are provided for “failure” report handling, it is assumed that the
transaction leaves the system at the time of “failure’” report.

4. Message length is a random variable and exponentially distributed. )

5. The system employs either a linear or binary exponential backoff scheme. All the nodes
use same scheme.

6. The probability of collision in the system can be estimated by applying the channel
efficiency described in Reference 7.
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3. Events in the Model
In our simulation model, discontinuous changes of states occur. The term “event” is used to
mean such a change occurring at a specific point in time. As a transaction goes through the model,
there are two different kinds of events which may take place independently: processorevents and
channel-events. ‘
a. Processor-event
PEVENT 1 (start processing): if a process captures a processor, the processor will start the
process immediately.
PEVENT 2 (interrupt): if a process is interrupted by a higher priority process or the timer in
the system, that process goes back to the processor queue.
"PEVENT 3 (end processing): on the completion of execution, 4 process releases the processor.
b. Channel-event
CEVENT 1 (transmission): if the channel is sensed idele by a node, then a message is transmitt-
ed onto the channel.
CEVENT 2 (defer): if the channel is sensed busy, then the node must defer its transmission
attempt until the end of the transmission.
CEVENT 3 (collision): if two or more nodes start their transmissions before they can detect
each other’s signal, then a collision will occur, and the backoff algorithm will be invoked.
CEVENT 4 (dead packet): after the termination of a message transmission, whether successful
or not, the packet will still be traveling toward the two ends of the bus. In the model, we shall
refer to this as a “dead packet” although its presence could still affect other nodes transmission
decisions. '
4. Inpuf Parameters and Output Statistics
a. Input Parameters
Since the physical configuration of the system is not fully specified, we need to develop a
flexible model to reflect various physical configurations by using input parameters. The following
is a list of input parameters to be considered.
1. Number of nodes in the system.
. Transaction arrival rate and distribution.
. Sequence of nodes to be visited for each transaction class.
. Mean service time of each node per transaction class.
. Priority level of each transaction class.
. Packet size and distribution.
. Channel capacity.
. Maximum processor time per process.
. Length of the bus (slot time).
b. Output Statistics
The object of this study is to develop a simulation model which enables us to evaluate a LAN in
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support of SPLICE. Consequently, the output of the model includes the following statistics:
1. Response time for whole transactions and for each transaction class.
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2. Queuing statistics at each node and of the system.
3. Collision at each node and of the system.
4. Channel throughput (utilization)

5. Percent of channel access at each node.

II. IMPLEMENTATION OF THE MODEL

A. SIMULATION LANGUAGE

As described earlier, the movement of transactions in the model can be expressed in terms of
an event. This enables us to use a discrete event-driven model to simulate the system. The GPSS
simulation language is a popular simulation tool for handling event-driven models and the con-
currency of transactions in a model. The GPSS does not provide enough arithmetic functions to
calculate channel-efficiency and backoff algorithm, however the HELP blocks enable the GPSS
user to incorporate independently written routines into his simulation run [Ref. 5] . FORTRAN

routines are used to perform these functions.

B. TIME UNIT OF SIMULATION CLOCK

The passage of time is recorded as a number called clock time, or simply the clock. The clock
is initially set to zero and, as the simulation proceeds, it is updated to reflect the passage of time.
The unit of time is an integral number which can be used for any time interval chosen by the
user. In practice, the unit of time must be small enough to realistically reflect the time spans
which occur in the system being modeled. Since this model reflects a computer system, a 10
microsecond unit is appropriate for the time unit,

It is possible to update the clock in uniform steps. In that case, the program must determine
if an event is due to occur at the new time [Ref. 4] . In this model, however, tﬁe program keeps
a record of future events in chronological order, and the clock time is updated to the time of the

next most imminent event.

C. SETUP AND USE OF MATRICES

Matrices are used to determine the visitation sequence of transactions, and the mean service
times of nodes for each transaction class. Table 1shows an example of visitation sequences for 12
transaction classes and mean service time of nodes for each transaction class. Using the data
provided in Table 1,the following two tables are produced. Table 2 and Table 3 can be used by
the model as a visitation sequence matrix and a mean service time matrix, respectively. Before
being served by a node, a transaction simply needs to index the appropriate cell of these matrices.
There are eight columns in each matrix, corresponding to the maximum number of nodes that
any one transaction class must visit. Twelve rows in the matrix represent the transaction classes
1 through 12. Similar to the transaction classes, a system generated process can be included by
adding the desired number of rows. Enteries in the body of Table 2 and Table 3 are interpreted
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Table 1. Visitation Sequence and Mean Service Times for Transaction Classes

(Hypothetical Data)
Total no.
Trans. of nodes to Visitation Sequence (node number)
Class be visited /Mean Service time {(millisecond)
1 3 Node 5/40 Node 6/45 Node 4/50
2 3 Node 8/55 Node 6/60 Node 4/75
3 2 Node 6/80" Node 4/92
4 3 Node 6/66 Node 4/75 Node 2/67
5 4 Node 5/65 Node 6/54 Node 1/66 Node 3/80
6 2 Node 4/64 Node 1/85
7 3 Node 7/64 Node 6/58 Node 4/100
8 3 Node 3/34 Node 6/58 Node 4/55
9 4 Node 5/45 Node 3/74 Node 6/63 Node 4/87
10 3 Node 3/85 Node 4/88 Node 2/90
11 3 Node 2/35 Node 6/60 . Node 4/100
12 4 Node 2/55 Node 5/65 Node 6/83 Node 4/85
Table 2. Visitation Sequence Matrix (Hypothetical Data)
No. of nodes yet to be visited
Trans. Class 1 2 3 4 5 6 7 8
1 5 6 4
2 8 6 4
3 6 4
4 6 4 2
5 - 5 6 1 3
6 4 1
7 7 6 4
8 3 6 4
9 -5 3 6 4
10 3 4 2
11 2 6 4
12 2 5 6 4

Note: Each cell represents the node number to be visited next.
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Table 3. Mean Service Time Matrix (Hypothetical Data)

No. of nodes yet to be visited

Trans. Class 1 2 3 4 5 6 7 8
Trans. Cl
1 400 450 500
2 550 600 . 750
3 800 920
4 880 750 670
5 660 540 660 800
6 650 850
7 640 580 1000
8 430 580 550
9 450 740 630 870
10 850 880 900
11 350 600 1000
12 550 650 830 850

Note: Each cell represents the mean service time in 10 microsecond units.

as the identifier of a node to be visited next and the mean service time of the next node for a
transaction, respectively.

It is a simple matter for a transaction to index the proper cell of the visitation sequence and
mean service time matrices. Byte parameter 1 (PB1) is assigned to identify the transaction class
and PB1 can be used as a matrix rowindex. Byte parameter 2 (PB2) contains the number of re-
maining nodes to be visited for the transaction and PB2 can be used as a matrix column-index.
To do this. PB2 needs to be initialized with the total number of nodes to be visited. After a
transaction has been served by a node, PB2 will be decremented by 1, meaning that its value can
be interpreted as the number of nodes yet to be visited. Consequently, the model can recognize
the completion of service for a transaction when PB2 has value zero. Then ‘MBI (P1,P2)” indi-
rectly specifies the next node number and “MX2 (P1, P2)” indirectly specifies the corresponding
mean service time.

All the parameters, savevalues, matrix savevalues, functions, and variables used by the model
are defined in Table 4.
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Table 4. SNA Definitions

GPSS ENTITY SNA DESCRIPTION
PARAMETERS
Byteword PB1 Carries Transactions Class
PB2 No. of nodes yet to visit
PB3 Next node to be visited
PB4 Transmission attempt without success
Fullword PF1 Service time required by current node
PEF2 Packet length to be transmitted
SAVEVALUES
Byteword XBSNUM Total No. of nodes
XBSMTRY Max. number of transmission attempts allowed per transaction
XBSCOUNT Mutiplication count
Halfword XH;j Number of collisions at node j
XHS$FAILj Consecutive transmission failures at each node
Fullword FX$PACK Mean packet length '
XFSCAPA Channel capadity
XFSMTIME Max. processor time per transaction
XF$COLj Total no. of collisions at node j
XF$SUCj Total no. of successful transmissions at node j
Float-point XLESLOT Slot time (two way propagation delay)
XL$PACQU Channel acquisition probability for one node caculated by
equation:
(1-1/Q)**(Q-1),
where Q is total number of nodes
XL$TWAIT Mean number of slots waiting in a contention interval before
a successful acquisition of the bus by a node ‘
MATRICES
Byteword MB1 Visitation sequence matrix
Fullword MF2 Mean service time matrix
PUNCTIONS FNSEXPO Inverted exponential distribution function
FNSTRANS Determines Transaction Classes
FNSNCNDS Assigns total no. of node to be visited
FNSPRTY Assigns priority level
FNSNEXT Identities the next node to be visited
FNSMXINT Returns the value 2**PB4
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Table 4. (Continued)

GPSS ENTITY SNA DESCRIPTION
VARIABLES
- VEWAIT Mean waiting time for acquiring the channel
VSMULT Computes (1-1/Q)*(1-1/Q)
VSRAND Generates random no. between 0 and 0.999
VSEFFI Calculates channel efficiency
VSLENTH Determines packet lengths
VISTIME Determines service time
V$RESCH Computes reschedule time for colliding packets
VSXTIME Computes bus transit time

D. MODEL DESCRIPTION

The simulation model was developed using the GPSS V block diagram. This model consists of
two model segments, initialization and simulation of the system.

1. Model Segment 1 (Initialization)

This part initializes all the input parameters identified in the last chapter according to the
configuration of a particular LAN to be simulated.

The block diagram of the model segment 1 is depicted in Figure 2. The GENERATE block
in the diagram creates only one transaction because segment 1 needs to be executed once. The
visitation sequence matrix (MB1) and mean service time matrix (MX2) are initialized by the
MSAVEVALUE blocks. The HELP block invokes a FORTRAN subroutine to calculate
XLSTWAIT, the mean number of slots involved in waiting in a contention interval before a suc-
cessful acquisition of the bus by a node. This will be used to compute channel efficiency in the
model segment 2.

All the savevalues that need to be initialized have their value established by INITIAL control
statements, not by blocks, therefore it does not appear in the block diagram.

XBINUM: Total number of nodes

XBSMTRY: Max. number of transmission trial per message
XHEMINPK : Min. packet length

XF$PACK: Mean packet length

XF$CAPA: Channel capacity

XFSMTIME: Max. processor time per process

XL$SLOT: Slot time
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Figure 2. Model Initialization.

Note; Each MSAVEVALUE block represents RXC MSAVEV ALUE biocks where R and C
are the number of rows and columns of matrix and V is the value to be initialized..

2. Model Segment 2 (Simulation of a LAN)

This segment consists of four distinct functional sections which are: distribution of transactions
to the nodes, execution of processes, sending messages, and transiting the bus. Each of these sec-
tions will be described prior to discussion of the complete system simulation.

a. Transaction Distribution

Figure 3 shows this portion of the model. The transactions are generated in accordance with the
inverted exponential distribution (FN$SEXPON) with mean value m.The transaction class for the
arriving transaction and the total number of nodes which must be visited by the transaction are
determined by FNSTRANS and FNSNONDS, and those values are assigned to PB1 and PB2 by
the two ASSIGN blocks. The priority level of arriving transactions are set in the PRIGRITY block
by the user defined function (FNSPRTY). Then the model! identifies the next node to be visited
and the mean service time of the node for the transaction. In the next two ASSIGN blocks, the
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value of MB1 (PB1, PB2) is assigned to PB3, and PF1 contains the service time of the next node
for the transaction. The service time is evaluated by the function, FNSEXPO, with mean service
time obtained from the matrix savevalue MX2 (PBI1, PB2). After being assigned these parameters,
a transaction visits the next node identified by PB3.

The memory requirement is simply not considered because the mean service time and distribu-
tion reflects not only CPU time but also I/O time. The size of main memory affects the distribu-
tion of service time but not the flow of transactions. The longer service time jobs involve more
1/0O activity.

b. Execution of Processes

Figure 4 shows this portion of the model for the node. When a node receives a message it
creates a process and puts the process into processor queue (PROQj) at its original priority level
until the process gets the processor.

The PREEMPT block allows only one transaction to be executed at a time, and enables high
priority processes. Interrupting the execution of low priority process. High priority interrupts
are automatically handled by the PREEMPT block.

There is another type of interrupt we have to consider, the timer-interrupt. If the service
time (PF1) is less than or equal to the maximum processor time (XFSMTIME), the process com-
pletes its execution without timer interrupt. If the PF1 is greater than the XFSMTIME, however,
the process will be interrupted by the timer. In this case the process executes for the maximum
allowed processor time and the maximum allowed processor time is subtracted from the service
time. The interrupted process, either by high priority process or timer, goes back to the PROQj
at its own priority level for the remaining service.

When the process has completed its execution, it releases the processor. Then it is necessary
to determine whether the service for the transaction has been completed. It is accomplished by
decrementing the number of nodes yet to be visited (PB2). If it has a value of zero, the service
has been completed. Then the transaction leaves the model. Otherwise, messages and control
signals to be sent to the next node are generated.

¢. Sending Messages

Figure 5 shows the portion of the model for node- transmitting messages. If a transaction
needs to visit another node, a generated message is put into the global bus interface queue (GBIQj)
and waits until the node gets control of the bus (BGUS).

Collidihg packets are identified by applying the channel efficiency, that fraction of time the bus
is carrying good packets (without collision). We present a set of formulas with which to charac-
terize 'the performance of a contention bus when it is heavily loaded [Ref. 7] The equations are
as follows:

1. A=(1-(1/Q)**(Q-1)
where;
A is the probability that exactly one station attempts a transmission in a slot, and gets
the control of the channel. Q represents the number of stations continuously queued
to transmit a packet.
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2. W= ~A)/A
where-
W is the mean number of slots waiting in a contention interval before a successful
acquisition of the bus by a station.

3. E=(P/C) / (P/C) + (W*T)

~ where:

E,P,C, and T represent the channel efficiency, packet length in bits per packet, the
peak channel capacity in bits per second, and a time slot in seconds, respectively.

In our model, E is used to estimate the probability of transmitting a packet without collision
at each node. When a transaction enters the TEST block, a random number (0.1 - 0.999) is gener-
ated. If the random number is greater than E, it is assumed that collision has taken place. Other-
wise, the transmission is considered to be successful.

Even though a packet is transmitted without collision, there is the possibility of unseccessful
transmission caused by packet errors or receiving node failure. The probability of packet error in
the Ethernet, by experiment, is very small (about 1 packet per 2,000,000 packets) [Ref. 8].
The effect of error packets is small enough to be ignored in this process. Unsuccessful transmis-
sions which are caused by system failure can be simulated using FUNAVAIL AND FAVAILABLE
blocks. However, no statistics are available for those blocks at this moment.

The packet leaves the GBIQj if the transmission was successful. The colliding packet uses the
bus for a unit of time slot and increments the number of transmission attempts for the transac-
tion. If the number of transmission attempis becomes equal to the user defined number
(XBSMTRY), a system failure is assumed and the transaction leaves the system. Otherwise, the
transmission time is rescheduled and the transaction retums to the GBIQj and waits until the -
event time has been reached. The HELP block invokes a FORTRAN subroutine to calculate 2**r,
where r is number of transmission trials without success for the message, that is used to compute
the backoff time.

d. Transiting the Bus

Figure 6 illustrates this portion of-the model. Once a packet gets the control of the GBUS,
it is transmitted without interruption. When the transmission is accomplished, the transaction
releases the GBUS making the GBUS free and visits the next node. Since the PB1 was decremented
by one and its value is not zero, the next node can be identified by the same procedure explained
in the transactjon distribution.
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IV. PROGRAMMING THE MODEL

It is straightforward to write a GPSS program using the block diagram we have constructed.
Although two HELP blocks are used in the block diagram, HELP blocks and FORTRAN routines
are not used. This program uses a block of GPSS V code using loop and a function (FNSMXINT)
to calculate the channel efficiency (XL$SEFFI) and backoff time because no information is avail-
able to link two programs written in different programming languages.

This chapter describes the transition from a block diagram provided in the last chapter to GPSS
V codes. To clarify the transaction flow, the statements used to collect statistics and to generate
outputs are not discussed in this chapter.

A. MODEL SEGMENT 1

Because the physical configuration of the system is not fully specified, the following hypothe-
tical data were used to initialize the model.

1. Visitation sequence matrix: Table 2

2. Mean service timematrix: Table 3

3. Total number of nodes: 8

4. Max. number of transmission trials per transaction: 3
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5. Min. packet length: 800 bits

6. Mean packet length: 8000 bits

7. Channel capacity: 50 megabits per second

8. Max processor time per process: 10000 (10 microseconds)-
9. Slot time: 1 (10 microsecond)

Coding of the block diagram in Figure 2 is described here. Matrix initialization is accomplished
by R*C MSAVEVALUE statements:

MSAVEVALUE N,R,C, VLUE, TYPt
where: N is matrix number, R and C are the total number of row and columns in the matrix,
V is the value to be éssigned, and T represents the type of savevalues.

Other savevalues are initialized by the following INITIAL control statement.

INITIAL XB$NUM, 8/ XBSMTRY, 3/SHSMINPK , 800

INITIAL XF$PACK, 8000/XF$CAPA, 50000000/ XF$MTIME, 10000 -

INITIAL XL$SLOT, 0.00001
The program below calculates the méan number of slots of waiting in a contention interval, W:

SAVEVALUE PACQU,1 XL A=1
SAVEVALUE COUNT, XB$NUM XB COUNT=Q

LOOP SAVEVALUE PACQU,VSMULT XL A= A%(1-1/Q)
SAVEVALUE COUNT-, 1, XB COUNT = COUNT-1
TEST LE XB$COUNT.1.LOOP IF COUNT > 1 go to LOOP
SAVEVALUE TWAIT VSWAIT XL~ W=(1-A)/A

* Returns to value of A*(1-1/Q)

MULT FVARIABLE XLSPACQU*(1-1/XBINUM)

* Calculates (1-A)/A

WAIT FVARIABLE (1-XL$SPACQU)/XL$PACQU
The above is equivalent to the following HELP block and FORTRAN routine.
HELPC #CHANEFF XL$TWAIT XBSNUM XLEPACQU
SUBROUTINE CHANEFF (W,Q,A)
REAL W.,Q.A
A=(1-1/Q**(Q-1)
W=(1-A)/A
RETURN
END

Segment 1 terminates after initializing all the input parameters.
B. MODEL SEGMENT 2

Table 5 shows the “Workload Forecast Table” provided by the project sponsor. This was
used to determine the mean interarrival time and the distribution of transaction classes.
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Table 5. Peak Hour Workload Characteristics (First Six Month Period in Year Five)

Trans. Class Trans/sec Frequency Cumulative Frequency
1 6034 0396 039
2 8543 0561 0957
2 4053 0266 1223
4 2081 0184 1407 -
5 2.2000 1444 2851
6 3229 0212 3063
7 7262 0476 3539
8 6935 0455 3994
9 0538 0035 4029
10 4397 0288 4317
11 7523 0494 4811
12 7.9074 5189 1.0000
TOTAL 15.6871 1.0000

1/Total Transaction Arrival Rate
1/15.6871 (second)

0.06562 (second)

6562 (10 microsecond)

Mean Interarrival Time

[}

The following program corresponds to the transaction distribution part of the block diagram

shown in Figure 3.

* — INVERTED EXPONENTIAL FUNCTION
* Determines interarrival time and packet length

EXPO FUNCTION FN1, C24
0,1/.1,.104/.2,222/.3,.355/ 4,.509/ .5,.69
0.6,915/.7,12/.75,1.38/.8,1.6/.84,1.83/.88,2.12
09,2.3/92,2.52/942.81/95299/9632/973.5
098.39/9946/99562/999,7/9997 8

* — TRANSACTION CLASS DISTRIBUTION
» Determines transaction class based on the Table 11

TRANS FUNCTION RN2, D12

0.0396,1/.0957,2/.1223 3/.1407 4/ 2851 ,5/.3063,6
03539,7/.3994 8/.4029.9/ 4317,10/ 4811,11/1.0,12
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« — TOTAL NO. OF NODES TO VISIT
*  is determined by Table I for each transaction class

NONDS FUNCTION PB1, L12
13/23/3,2/43/54/6,2/73/83/94/103/113/124

* — PRIORITY ASSIGNMENT
% The priority level of transactions are assigned as follows

* transaction class 1- 3: priority 1
* transaction class 4 - 6: priority 2
* transaction class 7- 9: priority 3
# transaction class 10 - 12: priority 4

PRITY FUNCTION PB1,L12
1,1/2,1/3,1/4,2/52/6.2/73/83/93/10 4/11 4/12 4

GENERATE 1,FNSTRANS PB transaction class
ASSIGN 2,FNSNONDS PB no. of nodes to visit
PRIORITY FNSPRTY assign priority level
DISTR ASSIGN 3 MBk(PBk PB2).PB next node number

ASSIGN 1,VSSTIME PF service time
TRANSFER EN,NEXT go to next node

* This statement identifies service time to referring to

* the service time matrix (MX2).

STIME FVARIABLE MX2(PB1 PB2)*FNSEXPO

Since all nodes perform the same functions, using different parameters, macros are used in order
to reduce duplication of codes. Two macros are used, NODE and SEND, which corresponds to
the execution of processes (Fig. 4) and sending messages (Fig. 5), respectively. These macros are
coded as follows: '

* — NEXT NODE TO VISIT

#*  This is identified by referencing the visitation sequence matrix. The contents of the
*  matrix are interpreted by this function.

NEXT FUNCTION PB3 18
1,NODE1/2 NODE2/3,NODE3/4 NODE4/5 NODES/6 NODE6/7 NODE7/8 NODES

+ — MAXIMUM INTEGER FUNCTION
x  returns the value of 2**PB4 which is interpreted as the maximum no. of slots to wait
% for retransmit after collision.
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NODE STARTMACRO Parameters
NODE; QUEUE PROQj
PREEMPT PROQ;j PR
DEPART PROQj
TEST LE PF1 XFSMTIME, TINTj
ADVANCE PF1
RETURN PROC;j
ASSIGN 2-,1PB
TESTE PB2, 0, SENDj
TABULATE TRTM
TRANSFER FN,TABLE
TINTj ADVANCE XFSMTIME
RETURN PROCj
ASSIGN 1., XFSMTIME PF
TRANSFER PROQj
ENDMACRO
SEND STARTMACRO Parameters
SENDj QUEUE GBIQj
ASSIGN 2, VSLENTH PF
SAVEVALUE 1,VSRAND XL
SAVEVALUE 2, VSEFFIL, XL
TESTG XL1 XL2 XMITj
advance 1
SAVEVALUE 1+,1,XH
ASSIGN 4 XH] PB
TEST G PB4 XBSMTRY BACKj]
TERMINATE i
BACKj ADVANCE V$RESCH
TRANSFER ,SEND;j
XMITj SAVEVALUE i 0,XH
SEIZE GBUS
DEPART GBIQj
TRANSFER JBUS
ENDMACRO

enter processor' queue
interrupt by priority
leave processor queue
timer interrupt?

then go to TINT]j

else execute process
releases the processor
PB2 =PB2~1

job done?

transit time table

to to TABLE

process for max time
releases the processor
service time-max time
go back to the PROQj

enter GBIQj
PF2 = message length
XL1 = random no. 0-999
XL2 = channel efficiency
if successful,
then go to XMITj
collision detection time
increament number of
transmission trials
PB4 = no. of trials
too many attempts?
then leave the model
else delay the trans
go back to GBIQj
reset no of trans trial
get the control of GBUS
leave the GBIQj
to to BUS
end of macro

Computes packet length using mean packet length and -

FNSEXPO.
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LENGTH FVARIABLE (XF$PACK-XHSMINPK)*FNSEXPO+XHSMINPK

* Generates a random number between 0 and .999

RAND FVARIABLE RN4/1000

* Calculates channel efficiency (P/C)/(P/C+W*S)

EFFI ©~ FVARIABLE (PF2/XF$CAPA)/PF2/XF$CAPA+XLSTWAIT*XL*SLOT)
* Generates a random number between 0 and FNSMXINT

RESCH FVARIABLE RN3*FNSMXINT/1000
The last part of the model, transiting the bus, is coded as follows:

BUS ADVANCE V$XTIME bus transit time
RELEASE GBUS release the GBUS
TRANSFER ,DISTR to to next node

* Computes bus transition time

XTIME FVARIABLE (XL$SLOT+PF2/XLSCAPA)/XL$SLOT

System parameters can be changed simply by reinitializing savealues and matrix savevalues
provided in the model segment 1. Based on the configuration used in this chapter a completed
program listing and all output statistics can be provided by the author.

V. CONCLUSION

The model provided in this thesis is constructed to be used to evaluate the performance of a
CSMA/CD bus LAN. Since the physical configuration of a SPLICE system is not fully specified
and a specialized model is not able to answer new and unexpected questions, it was desired to
build a more generalized model that can be used to evaluate various system configurations and
workload characteristics of the SPLICE system. In order to meet the requirement, the model was
divided into two model segments. Model segment 1 is dedicated to initializing the system con-
figuration. The system simulation is performed by model segment 2. Based on the hypothetical
data, modeling and programming of the two model segments were described.
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