• Title/Summary/Keyword: Simulation Modeling

Search Result 6,613, Processing Time 0.037 seconds

Binding Mode Analysis of Bacillus subtilis Obg with Ribosomal Protein L13 through Computational Docking Study

  • Lee, Yu-No;Bang, Woo-Young;Kim, Song-Mi;Lazar, Prettina;Bahk, Jeong-Dong;Lee, Keun-Woo
    • Interdisciplinary Bio Central
    • /
    • v.1 no.1
    • /
    • pp.3.1-3.6
    • /
    • 2009
  • Introduction: GTPases known as translation factor play a vital role as ribosomal subunit assembly chaperone. The bacterial Obg proteins ($Spo{\underline{0B}}$-associated ${\underline{G}}TP$-binding protein) belong to the subfamily of P-loop GTPase proteins and now it is considered as one of the new target for antibacterial drug. The majority of bacterial Obgs have been commonly found to be associated with ribosome, implying that these proteins may play a fundamental role in ribosome assembly or maturation. In addition, one of the experimental evidences suggested that Bacillus subtilis Obg (BsObg) protein binds to the L13 ribosomal protein (BsL13) which is known to be one of the early assembly proteins of the 50S ribosomal subunit in Escherichia coli. In order to investigate binding mode between the BsObg and the BsL13, protein-protein docking simulation was carried out after generating 3D structure of the BsL13 structure using homology modeling method. Materials and Methods: Homology model structure of BsL13 was generated using the EcL13 crystal structure as a template. Protein-protein docking of BsObg protein with ribosomal protein BsL13 was performed by DOT, a macro-molecular docking software, in order to predict a reasonable binding mode. The solvated energy minimization calculation of the docked conformation was carried out to refine the structure. Results and Discussion: The possible binding conformation of BsL13 along with activated Obg fold in BsObg was predicted by computational docking study. The final structure is obtained from the solvated energy minimization. From the analysis, three important H-bond interactions between the Obg fold and the L13 were detected: Obg:Tyr27-L13:Glu32, Obg:Asn76-L13:Glu139, and Obg:Ala136-L13:Glu142. The interaction between the BsObg and BsL13 structures were also analyzed by electrostatic potential calculations to examine the interface surfaces. From the results, the key residues for hydrogen bonding and hydrophobic interaction between the two proteins were predicted. Conclusion and Prospects: In this study, we have focused on the binding mode of the BsObg protein with the ribosomal BsL13 protein. The interaction between the activated Obg and target protein was investigated with protein-protein docking calculations. The binding pattern can be further used as a base for structure-based drug design to find a novel antibacterial drug.

Estimation of fire Experiment Prediction by Utility Tunnels Fire Experiment and Simulation (지하공동구 화재 실험 및 시뮬레이션에 의한 화재 설칠 예측 평가)

  • 윤명오;고재선;박형주;박성은
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.23-33
    • /
    • 2001
  • The utility tunnels are the important facility as a mainstay of country because of the latest communication developments. However, the utilities tunnel is difficult to deal with in case of a fire accident. When a cable burns, the black smoke containing poisonous gas will be reduced. This black smoke goes into the tunnel, and makes it difficult to extinguish the fire. Therefore, when there was a fire in the utility tunnel, the central nerves of the country had been paralyzed, such as property damage, communication interruption, in addition to inconvenience for people. This paper is based on the fire occurred in the past, and reenacting the fire by making the real utilities tunnel model. The aim of this paper is the scientific analysis of the character image of the fire, and the verification of each fire protection system whether it works well after process of setting up a fire protection system in the utilities tunnel at a constant temperature. The fire experiment was equipped with the linear heat detector, the fire door, the connection water spray system and the ventilation system in the utilities tunnel. Fixed portion of an electric power supply cable was coated with a fire retardant coating, and a heating tube was covered with a fireproof. The result showed that the highest temperature was $932^{\circ}c$ and the linear heat detector was working at the constant temperature, and it pointed at the place of the fire on the receiving board, and Fixed portion of the electric power supply cable coated with the fire retardant coating did not work as the fireproof. The heating tube was covered with the fireproof about 30 minutes.

  • PDF

Factors Influencing the Adoption of Location-Based Smartphone Applications: An Application of the Privacy Calculus Model (스마트폰 위치기반 어플리케이션의 이용의도에 영향을 미치는 요인: 프라이버시 계산 모형의 적용)

  • Cha, Hoon S.
    • Asia pacific journal of information systems
    • /
    • v.22 no.4
    • /
    • pp.7-29
    • /
    • 2012
  • Smartphone and its applications (i.e. apps) are increasingly penetrating consumer markets. According to a recent report from Korea Communications Commission, nearly 50% of mobile subscribers in South Korea are smartphone users that accounts for over 25 million people. In particular, the importance of smartphone has risen as a geospatially-aware device that provides various location-based services (LBS) equipped with GPS capability. The popular LBS include map and navigation, traffic and transportation updates, shopping and coupon services, and location-sensitive social network services. Overall, the emerging location-based smartphone apps (LBA) offer significant value by providing greater connectivity, personalization, and information and entertainment in a location-specific context. Conversely, the rapid growth of LBA and their benefits have been accompanied by concerns over the collection and dissemination of individual users' personal information through ongoing tracking of their location, identity, preferences, and social behaviors. The majority of LBA users tend to agree and consent to the LBA provider's terms and privacy policy on use of location data to get the immediate services. This tendency further increases the potential risks of unprotected exposure of personal information and serious invasion and breaches of individual privacy. To address the complex issues surrounding LBA particularly from the user's behavioral perspective, this study applied the privacy calculus model (PCM) to explore the factors that influence the adoption of LBA. According to PCM, consumers are engaged in a dynamic adjustment process in which privacy risks are weighted against benefits of information disclosure. Consistent with the principal notion of PCM, we investigated how individual users make a risk-benefit assessment under which personalized service and locatability act as benefit-side factors and information privacy risks act as a risk-side factor accompanying LBA adoption. In addition, we consider the moderating role of trust on the service providers in the prohibiting effects of privacy risks on user intention to adopt LBA. Further we include perceived ease of use and usefulness as additional constructs to examine whether the technology acceptance model (TAM) can be applied in the context of LBA adoption. The research model with ten (10) hypotheses was tested using data gathered from 98 respondents through a quasi-experimental survey method. During the survey, each participant was asked to navigate the website where the experimental simulation of a LBA allows the participant to purchase time-and-location sensitive discounted tickets for nearby stores. Structural equations modeling using partial least square validated the instrument and the proposed model. The results showed that six (6) out of ten (10) hypotheses were supported. On the subject of the core PCM, H2 (locatability ${\rightarrow}$ intention to use LBA) and H3 (privacy risks ${\rightarrow}$ intention to use LBA) were supported, while H1 (personalization ${\rightarrow}$ intention to use LBA) was not supported. Further, we could not any interaction effects (personalization X privacy risks, H4 & locatability X privacy risks, H5) on the intention to use LBA. In terms of privacy risks and trust, as mentioned above we found the significant negative influence from privacy risks on intention to use (H3), but positive influence from trust, which supported H6 (trust ${\rightarrow}$ intention to use LBA). The moderating effect of trust on the negative relationship between privacy risks and intention to use LBA was tested and confirmed by supporting H7 (privacy risks X trust ${\rightarrow}$ intention to use LBA). The two hypotheses regarding to the TAM, including H8 (perceived ease of use ${\rightarrow}$ perceived usefulness) and H9 (perceived ease of use ${\rightarrow}$ intention to use LBA) were supported; however, H10 (perceived effectiveness ${\rightarrow}$ intention to use LBA) was not supported. Results of this study offer the following key findings and implications. First the application of PCM was found to be a good analysis framework in the context of LBA adoption. Many of the hypotheses in the model were confirmed and the high value of $R^2$ (i.,e., 51%) indicated a good fit of the model. In particular, locatability and privacy risks are found to be the appropriate PCM-based antecedent variables. Second, the existence of moderating effect of trust on service provider suggests that the same marginal change in the level of privacy risks may differentially influence the intention to use LBA. That is, while the privacy risks increasingly become important social issues and will negatively influence the intention to use LBA, it is critical for LBA providers to build consumer trust and confidence to successfully mitigate this negative impact. Lastly, we could not find sufficient evidence that the intention to use LBA is influenced by perceived usefulness, which has been very well supported in most previous TAM research. This may suggest that more future research should examine the validity of applying TAM and further extend or modify it in the context of LBA or other similar smartphone apps.

  • PDF

Water quality prediction of inflow of the Yongdam Dam basin and its reservoir using SWAT and CE-QUAL-W2 models in series to climate change scenarios (SWAT 및 CE-QUAL-W2 모델을 연계 활용한 기후변화 시나리오에 따른 용담댐 유입수 및 호내 수질 변화 예측)

  • Park, Jongtae;Jang, Yujin;Seo, Dongil
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.10
    • /
    • pp.703-714
    • /
    • 2017
  • This paper analyzes the impact of two climate change scenarios on flow rate and water quality of the Yongdam Dam and its basin using CE-QUAL-W2 and SWAT, respectively. Under RCP 4.5 and RCP 8.5 scenarios by IPCC, simulations were performed for 2016~2095, and the results were rearranged into three separate periods; 2016~2035, 2036~2065 and 2066~2095. Also, the result of each year was divided as dry season (May~Oct) and wet season (Nov~Apr) to account for rainfall effect. For total simulation period, arithmetic average of flow rate and TSS (Total Suspended Solid) and TP (Total Phosphorus) were greater for RCP 4.5 than those of RCP 8.5, whereas TN (Total Nitrogen) showed contrary results. However, when averaged within three periods and rainfall conditions the tendencies were different from each other. As the scenarios went on, the number of rainfall days has decreased and the rainfall intensities have increased. These resulted in waste load discharge from the basin being decreased during the dry period and it being increased in the wet period. The results of SWAT model were used as boundary conditions of CE-QUAL-W2 model to predict water level and water quality changes in the Yongdam Dam. TSS and TP tend to increase during summer periods when rainfalls are higher, while TN shows the opposite pattern due to its weak absorption to particulate materials. Therefore, the climate change impact must be carefully analyzed when temporal and spatial conditions of study area are considered, and water quantity and water quality management alternatives must be case specific.

Assessment of the Safe Rice Cropping Period Based on Temperature Data in Different Regions of North Korea (북한 지역별 기온 자료를 활용한 벼 안전 재배 시기 분석)

  • Yang, Woonho;Kang, Shingu;Kim, Sukjin;Choi, Jong-Seo;Park, Jeong-Hwa
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.2
    • /
    • pp.190-204
    • /
    • 2018
  • The probability of safe cropping and the major phenological stages in rice were assessed using daily mean temperature data from 1981 to 2016 at 27 sites in North Korea. The threshold temperatures for early marginal transplanting date (EMTD), marginal harvesting date (MHVD), safe marginal heading date (SMHD), and cumulative temperature-based heading date (CTHD) were set to be $14^{\circ}C$, $13^{\circ}C$, $22^{\circ}C$ for 40 days after heading, and cumulative temperature of $1200^{\circ}C$ to MHVD, respectively. The safe heading date (SHD) was assumed to be either SMHD or CTHD whichever was earlier. It was also assumed that the minimum requirement for the suitability of safe rice cropping was met when both SMHD and CTHD appeared along with the time period of 60 days or more from EMTD to SHD. It was analyzed that 17 sites (Kaesong, Haeju, Yongyon, Singye, Sariwon, Nampo, Pyongyang, Anju, Kusong, Sinuiju, Changjon, Wonsan, Hamhung, Pyonggang, Huichon, Supung, Kanggye) had 90% or higher probability, two sites (Yangdok, Sinpo) had 80-90% probability, and eight sites (Kimchaek, Chunggang, Chongjin, Sonbong, Changjin, Pungsan, Hyesan, Samjiyon) had less than 80% probability of the safe rice cropping. For each region, the representative EMTD, SHD, and MHVD were analyzed using the 80 percentile of total years tested. The ranges for EMTD, SHD, and MHVD were May 4 in Sariwon~May 24 in Sinpo, June 21 in Kanggye~August 11 in Haeju, and September 17 in Kanggye~October 16 in Haeju and Changjon, respectively. Time durations from EMTD to SHD and from SHD to MHVD were 67~97 days and 57~72 days, respectively, depending on the regions. This study would facilitate modeling efforts for rice yield simulation in future studies. Our results would also provide basic information for practical researches on the rice cropping system in North Korea.

Methods for Genetic Parameter Estimations of Carcass Weight, Longissimus Muscle Area and Marbling Score in Korean Cattle (한우의 도체중, 배장근단면적 및 근내지방도의 유전모수 추정방법)

  • Lee, D.H.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.509-516
    • /
    • 2004
  • This study is to investigate the amount of biased estimates for heritability and genetic correlation according to data structure on marbling scores in Korean cattle. Breeding population with 5 generations were simulated by way of selection for carcass weight, Longissimus muscle area and latent values of marbling scores and random mating. Latent variables of marbling scores were categorized into five by the thresholds of 0, I, 2, and 3 SD(DSI) or seven by the thresholds of -2, -1, 0,1I, 2, and 3 SD(DS2). Variance components and genetic pararneters(Heritabilities and Genetic correlations) were estimated by restricted maximum likelihood on multivariate linear mixed animal models and by Gibbs sampling algorithms on multivariate threshold mixed animal models in DS1 and DS2. Simulation was performed for 10 replicates and averages and empirical standard deviation were calculated. Using REML, heritabilitis of marbling score were under-estimated as 0.315 and 0.462 on DS1 and DS2, respectively, with comparison of the pararneter(0.500). Otherwise, using Gibbs sampling in the multivariate threshold animal models, these estimates did not significantly differ to the parameter. Residual correlations of marbling score to other traits were reduced with comparing the parameters when using REML algorithm with assuming linear and normal distribution. This would be due to loss of information and therefore, reduced variation on marbling score. As concluding, genetic variation of marbling would be well defined if liability concepts were adopted on marbling score and implemented threshold mixed model on genetic parameter estimation in Korean cattle.

Infrared Characteristics of Some Flash Light Sources (섬광의 적외선 특성 연구)

  • Lim, Sang-Yeon;Park, Seung-Man
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.1
    • /
    • pp.18-24
    • /
    • 2016
  • To effectively utilize a flash and predict its effects on an infrared device, it is essential to know the infrared characteristics of the flash source. In this paper, a study of the IR characteristics of flash light sources is carried out. The IR characteristics of three flash sources, of which two are combustive and the other is explosive, are measured with an IR characteristic measurement system over the middle- and long-wavelength infrared ranges. From the measurements, the radiances over the two IR ranges and the radiative temperatures of the flashes are extracted. The IR radiance of flash A is found to be the strongest among the three, followed by those of sources C and B. It is also shown that the IR radiance of flash A is about 10 times stronger than that of flash B, even though these two sources are the same type of flash with the same powder. This means that the IR radiance intensity of a combustive flash source depends only on the amount of powder, not on the characteristics of the powder. From the measured radiance over MWIR and LWIR ranges for each flashes, the radiative temperatures of the flashes are extracted by fitting the measured data to blackbody radiance. The best-fit radiative temperatures (equivalent to black-body temperatures) of the three flash sources A, B, and C are 3300, 1120, and 1640 K respectively. From the radiance measurements and radiative temperatures of the three flash sources, it is shown that a combustive source radiates more IR energy than an explosive one; this mean, in turn, that the effects of a combustive flash on an IR device are more profound than those of an explosive flash source. The measured IR radiances and radiative temperatures of the flash sources in this study can be used to estimate the effects of flashes on various IR devices, and play a critical role for the modeling and simulation of the effects of a flash source on various IR devices.

Performance Estimation of Large-scale High-sensitive Compton Camera for Pyroprocessing Facility Monitoring (파이로 공정 모니터링용 대면적 고효율 콤프턴 카메라 성능 예측)

  • Kim, Young-Su;Park, Jin Hyung;Cho, Hwa Youn;Kim, Jae Hyeon;Kwon, Heungrok;Seo, Hee;Park, Se-Hwan;Kim, Chan Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Compton cameras overcome several limitations of conventional mechanical collimation based gamma imaging devices, such as pin-hole imaging devices, due to its electronic collimation based on coincidence logic. Especially large-scale Compton camera has wide field of view and high imaging sensitivity. Those merits suggest that a large-scale Compton camera might be applicable to monitoring nuclear materials in large facilities without necessity of portability. To that end, our research group have made an effort to design a large-scale Compton camera for safeguard application. Energy resolution or position resolution of large-area detectors vary with configuration style of the detectors. Those performances directly affect the image quality of the large-scale Compton camera. In the present study, a series of Geant4 Monte Carlo simulations were performed in order to examine the effect of those detector parameters. Performance of the designed large-scale Compton camera was also estimated for various monitoring condition with realistic modeling. The conclusion of the present study indicates that the energy resolution of the component detector is the limiting factor of imaging resolution rather than the position resolution. Also, the designed large-scale Compton camera provides the 16.3 cm image resolution in full width at half maximum (angular resolution: $9.26^{\circ}$) for the depleted uranium source considered in this study located at the 1 m from the system when the component detectors have 10% energy resolution and 7 mm position resolution.

The Optimal Operation on Auxiliary Spillway to Minimize the Flood Damage in Downstream River with Various Outflow Conditions (하류하천의 영향 최소화를 위한 보조 여수로 최적 활용방안 검토)

  • Yoo, Hyung Ju;Joo, Sung Sik;Kwon, Beom Jae;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.2
    • /
    • pp.61-75
    • /
    • 2021
  • Recently, as the occurrence frequency of sudden floods due to climate change increased and the aging of the existing spillway, it is necessary to establish a plan to utilize an auxiliary spillway to minimize the flood damage of downstream rivers. Most studies have been conducted on the review of flow characteristics according to the operation of auxiliary spillway through the hydraulic experiments and numerical modeling. However, the studies on examination of flood damage in the downstream rivers and the stability of the revetment according to the operation of the auxiliary spillway were relatively insufficient in the literature. In this study, the stability of the revetment on the downstream river according to the outflow conditions of the existing and auxiliary spillway was examined by using 3D numerical model, FLOW-3D. The velocity, water surface elevation and shear stress results of FLOW-3D were compared with the permissible velocity and shear stress of design criteria. It was assumed the sluice gate was fully opened. As a result of numerical simulations of various auxiliary spillway operations during flood season, the single operation of the auxiliary spillway showed the reduction effect of maximum velocity and the water surface elevation compared with the single operation of the existing spillway. The stability of the revetment on downstream was satisfied under the condition of outflow less than 45% of the design flood discharge. However, the potential overtopping damage was confirmed in the case of exceeding the 45% of the design flood discharge. Therefore, the simultaneous operation with the existing spillway was important to ensure the stability on design flood discharge condition. As a result of examining the allocation ratio and the total allowable outflow, the reduction effect of maximum velocity was confirmed on the condition, where the amount of outflow on auxiliary spillway was more than that on existing spillway. It is because the flow of downstream rivers was concentrated in the center due to the outflow of existing spillway. The permissible velocity and shear stress were satisfied under the condition of less than 77% of the design flood discharge with simultaneous operation. It was found that the flood damage of downstream rivers can be minimized by setting the amount allocated to the auxiliary spillway to be larger than the amount allocated to the existing spillway for the total outflow with simultaneous operation condition. However, this study only reviewed the flow characteristics around the revetment according to the outflow of spillway under the full opening of the sluice gate condition. Therefore, the various sluice opening conditions and outflow scenarios will be asked to derive more efficient utilization of the auxiliary spillway in th future.

Development of A Material Flow Model for Predicting Nano-TiO2 Particles Removal Efficiency in a WWTP (하수처리장 내 나노 TiO2 입자 제거효율 예측을 위한 물질흐름모델 개발)

  • Ban, Min Jeong;Lee, Dong Hoon;Shin, Sangwook;Lee, Byung-Tae;Hwang, Yu Sik;Kim, Keugtae;Kang, Joo-Hyon
    • Journal of Wetlands Research
    • /
    • v.24 no.4
    • /
    • pp.345-353
    • /
    • 2022
  • A wastewater treatment plant (WWTP) is a major gateway for the engineered nano-particles (ENPs) entering the water bodies. However existing studies have reported that many WWTPs exceed the No Observed Effective Concentration (NOEC) for ENPs in the effluent and thus they need to be designed or operated to more effectively control ENPs. Understanding and predicting ENPs behaviors in the unit and \the whole process of a WWTP should be the key first step to develop strategies for controlling ENPs using a WWTP. This study aims to provide a modeling tool for predicting behaviors and removal efficiencies of ENPs in a WWTP associated with process characteristics and major operating conditions. In the developed model, four unit processes for water treatment (primary clarifier, bioreactor, secondary clarifier, and tertiary treatment unit) were considered. Additionally the model simulates the sludge treatment system as a single process that integrates multiple unit processes including thickeners, digesters, and dewatering units. The simulated ENP was nano-sized TiO2, (nano-TiO2) assuming that its behavior in a WWTP is dominated by the attachment with suspendid solids (SS), while dissolution and transformation are insignificant. The attachment mechanism of nano-TiO2 to SS was incorporated into the model equations using the apparent solid-liquid partition coefficient (Kd) under the equilibrium assumption between solid and liquid phase, and a steady state condition of nano-TiO2 was assumed. Furthermore, an MS Excel-based user interface was developed to provide user-friendly environment for the nano-TiO2 removal efficiency calculations. Using the developed model, a preliminary simulation was conducted to examine how the solid retention time (SRT), a major operating variable affects the removal efficiency of nano-TiO2 particles in a WWTP.