• 제목/요약/키워드: Simulation Modeling

검색결과 6,572건 처리시간 0.041초

흡착공정 모델링을 위한 시뮬레이션 시스템 설계 및 구현 (Design and Implementation of Simulation System for Adsorption Process Modeling)

  • 안병태
    • 한국정보통신학회논문지
    • /
    • 제17권7호
    • /
    • pp.1709-1714
    • /
    • 2013
  • 생물 및 화학공정의 정제과정은 여러 단계의 크로마토그래프 분리공정을 포함할 수 있다. 최근 생명공학의 발전과 더불어 중요시되는 단백질과 같은 생물 분자의 분리를 위하여 크로마토그래피 흡착공정에 많은 관심이 집중되고 있다. 따라서 본 논문에서는 흡착공정 모델링을 위한 시뮬레이션 시스템을 설계 및 구현하였다. 본 시스템은 흡착공정 모델링에 따른 시뮬레이션 결과 값을 시각화하거나 곡선 그래프로 나타나도록 하였다. 본 시스템의 개발은 회분식 흡착공정 모사프로그램에 중점을 두어 국한되어 개발하였다.

CFRP 모델링 기법에 따른 CFRP-Al합금 SPR 접합공정의 수치해석 정확도 분석 (Analysis of the Numerical Simulation Accuracy in the CFRP-Al Alloy SPR Joint Process According to the CFRP Modeling Method)

  • 김성호;박남수;송정한;노우람;박근영;배기현
    • 소성∙가공
    • /
    • 제29권5호
    • /
    • pp.265-271
    • /
    • 2020
  • The purpose of this paper is to analyze the numerical simulation accuracy according to the CFRP modeling method in the CFRP-Al alloy SPR (Self-Piercing Rivet) joint process. The mechanical properties of the CFRP, aluminum sheet are precisely obtained from the tensile test according to the loading direction. Additionally, the hardening curve of rivet was calculated from the inverse analysis of the machined rivet-ring compression test. For the CFRP-Al alloy SPR simulation, two kinds of the CFRP modeling methods were established based on the continuum and layer-by-layer approaches. The simulation results showed that the CFRP layer-by-layer modeling method can provide more reliable prediction shape of the fractured sheets and deformed rivet. This simulation technique can be used in evaluating the CFRP-Metal SPR performance and designing the SPR process conditions.

실시간 야지주행 시뮬레이션을 위한 3차원 가상노면의 구성 및 적용에 대한 연구 (Study on the 3D Virtual Ground Modeling and Application for Real-time Vehicle Driving Simulation on Off-road)

  • 이정한;유완석
    • 한국자동차공학회논문집
    • /
    • 제18권4호
    • /
    • pp.92-98
    • /
    • 2010
  • Virtual ground modeling is one of key topic for real-time vehicle dynamic simulation. This paper discusses about the virtual 3D road modeling process using parametric surface concept. General road data is a type of lumped position vector so interpolation process is required to compute contact of internal surface. The parametric surface has continuity and linearity within boundaries and functions are very simple to find out contact point. In this paper, the parametric surface formula is adopted to road modeling to calculate road hight. Position indexing method is proposed to reduce memory size and resource possession, and a simple mathematical method for contact patch searching is also proposed. The developed road process program is tested in dynamic driving simulation on off-road. Conclusively, the new virtual road program shows high performance of road hight computation in vast field of off-road simulation.

시뮬레이션 입력 모형화 : 확률분포 모수 추정을 위한 표본크기 결정 (Simulation Input Modeling : Sample Size Determination for Parameter Estimation of Probability Distributions)

  • 박성민
    • 한국경영과학회지
    • /
    • 제31권1호
    • /
    • pp.15-24
    • /
    • 2006
  • In simulation input modeling, it is important to identify a probability distribution to represent the input process of interest. In this paper, an appropriate sample size is determined for parameter estimation associated with some typical probability distributions frequently encountered in simulation input modeling. For this purpose, a statistical measure is proposed to evaluate the effect of sample size on the precision as well as the accuracy related to the parameter estimation, square rooted mean square error to parameter ratio. Based on this evaluation measure, this sample size effect can be not only analyzed dimensionlessly against parameter's unit but also scaled regardless of parameter's magnitude. In the Monte Carlo simulation experiments, three continuous and one discrete probability distributions are investigated such as ; 1) exponential ; 2) gamma ; 3) normal ; and 4) poisson. The parameter's magnitudes tested are designed in order to represent distinct skewness respectively. Results show that ; 1) the evaluation measure drastically improves until the sample size approaches around 200 ; 2) up to the sample size about 400, the improvement continues but becomes ineffective ; and 3) plots of the evaluation measure have a similar plateau pattern beyond the sample size of 400. A case study with real datasets presents for verifying the experimental results.

Validation of Generalized State Space Averaging Method for Modeling and Simulation of Power Electronic Converters for Renewable Energy Systems

  • Rimmalapudi, Sita R.;Williamson, Sheldon S.;Nasiri, Adel;Emadi, Ali
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권2호
    • /
    • pp.231-240
    • /
    • 2007
  • This paper presents an advanced modeling and simulation technique applied to DC/DC power electronic converters fed through renewable energy power sources. The distributed generation (DG) system at the Illinois Institute of Technology, which employs a phase-l system consisting of a photovoltaic-based power system and a phase-2 system consisting of a fuel cell based primary power source, is studied. The modeling and simulation of the DG system is done using the generalized state space averaging (GSSA) method. Furthermore, the paper compares the results achieved upon simulation of the specific GSSA models with those of popular computer aided design software simulations performed on the same system. Finally, the GSSA and CAD software simulation results are accompanied with test results achieved via experimentation on both, the PV-based phase-l system and the fuel cell based phase-2 power system.

Large Scale Stabilized Finite Element Simulation and Modeling for Environmental Flows in Urban Area

  • Kashiyama Kazuo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 PARALLEL CFD 2006
    • /
    • pp.21-26
    • /
    • 2006
  • A large-scale finite element simulation and modeling method is presented for environmental flows in urban area. Parallel stabilized finite element method based on domain decomposition method is employed for the numerical simulation. Several GIS and CAD data are used for the preparation of the shape model for landform and urban structures. The present method Is applied to the simulation of flood flow and wind flow In urban area. The present method is shown to be a useful planning and design tool for the natural disasters and the change of environments in urban area.

  • PDF

생산 정보의 중립 데이터 포맷을 이용한 조선소 판넬 공장의 시뮬레이션 모델 생성에 관한 연구 (Study on Simulation Model Generation of a Shipyard Panel Block Shop using a Neutral Data Format for Production Information)

  • 이동건;백명기;이광국;박준수;신종계
    • 대한조선학회논문집
    • /
    • 제50권5호
    • /
    • pp.314-323
    • /
    • 2013
  • Production simulation technology is beneficial to solve the complicated and fluctuated problems in a shipyard. It takes too much time and effort to build simulation models in the field, though. This research proposes a feasible method to reduce the difficulties related to simulation modeling for the factory or shop capacity analysis. In addition, a proposed neutral data format for production information is efficient to manage information acquisition for simulation modeling automation. A panel block shop model is contributed to comparison between the conventional technique and the automated one. The automation technique is highly recommended to run a rapid simulation in the shipyard problem.

분산 시뮬레이션을 위한 HLA DEVS-Obj-C 환경 구축 (Devlopment HLA DEVS-Obj-C Environment for Distributed Simulation)

  • 최두진;조대호
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2002년도 추계학술대회 논문집
    • /
    • pp.85-89
    • /
    • 2002
  • Development of distributed simulation environment must be required in order to simulate the distributed models regionally and inter-operate with running simulations individually, Simulation based on DEVS formalism is difficult to simulate the distributed models. DEVS formalism is modeling methodology. To specify model, this formalism separates behavior and structure, therefore it is able to design complex model easily. HLA is standard framework of distribute simulation environment, It is defined to facilitate the interoperability and the reusability. RTI (Run Time Infrastructure) is software that provides common service to simulation systems and implementation of the HLA Interface Specification. Method of implementation is that modules cooperating with RTI are added to simulator on DEVS simulation environment. On the DEVS simulation environment (DEVS-Obj -C) that already developed, Highest class of abstract simulator uses service that RTI provide, then This environment is able to change DEVS model into Federate and run distribute simulation that inter-operates with the RTI. Because this distributed simulation environment includes convenience of modeling that obtains through the DEVS formalism and accompanies HLA standard, this environment make it possible to simulate with_ complex systems and heterogeneous simulations

  • PDF

SEDRIS를 이용한 디지털 생산 시뮬레이션과 합성 환경 매핑 (Mapping Digital Manufacturing Simulation to Synthetic Environment using SEDRIS)

  • 문홍일;한순흥
    • 한국시뮬레이션학회논문지
    • /
    • 제14권2호
    • /
    • pp.15-24
    • /
    • 2005
  • The goal of a distributed simulation such as battle field simulation is to combine all kinds of simulations in the same synthetic environment and to make people interact at the same time. It is a key issue to share the same synthetic environment among simulations. To support reusability and affordability in the modeling and simulation area, DMSO(Defense Modeling and Simulation Office) of USA developed concepts such as HLA(High Level Architecture) and SEDRIS (Synthetic Environmental Data Representation and Interchange Specification). In the industrial simulation area, the digital manufacturing is the main stream. To reduce cost and to reuse simulation environment, the standardization becomes the focus of digital manufacturing. This study proposes to use SEDRIS to improve interoperability of manufacturing data. The simulation data of DELMIA, which is a leading commercial digital manufacturing solution, is mapped and translated into the SEDRIS transmittal format. Mapping of the manufacturing simulation data and the synthetic environment are implemented and verified through experiments.

  • PDF