• Title/Summary/Keyword: Simulation Experiments

Search Result 3,616, Processing Time 0.027 seconds

A Design Methodology with Orthogonal Arrays Using Experiments and Computer Simulations (실험과 컴퓨터 모사 결과를 동시에 이용하여 직교배열표로 설계하는 방법)

  • Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.885-895
    • /
    • 2004
  • Generally, automatic design is carried out with computer simulation and the simulation models are established by investigating the correlations between the simulation and real experiments. Therefore, the experiment results are utilized as complimentary data although they are considered to be precise. Orthogonal arrays have been adopted for discrete design. A method is proposed to directly exploit the experiment results in the design process with orthogonal arrays. Experiments are allocated to some rows of an orthogonal array and computer simulations are allocated to the others. A rule for the allocation is found to keep the orthogonality. Error analysis of the design results is performed. Mathematical examples are made to verify the validity of the proposed method. Error models are defined with the examples and the design solutions from the examples are discussed.

A Benefit Analysis of Using Common Random Numbers When Optimizing a System by Simulation Experiments (시뮬레이션을 통한 시스템 최적화 과정에서 공통 난수 활용의 이점 분석)

  • 박진원
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.4
    • /
    • pp.1-10
    • /
    • 2000
  • One of the primary goals of the simulation experiments is to understand the overall system behavior and to analyze the system, ultimately to optimize the system. Optimizing the system includes determining the optimum condition of the system parameters of interest. This paper is concerned with the simulation methodology for estimating the unknown objective function for the system of interest and optimizing the system with respect to the controllable factors. In the process of estimating the unknown objective function, which is assumed to be a second order spline function, we use common random numbers for different set of the controllable factors resulting in more accurate parameter estimation for the objective function. We will show some mathematical result for the benefit of using common random numbers.

  • PDF

Matching of Physical Experiments and Multibody Dynamic Simulation for Large Deformation Problems

  • Yoo, Wan-Suk;Lee, Jeong-Han;Sohn, Jeong-Hyun;Park, Su-Jin;Oleg Dmitrochenko;Dmitri Pogorelov
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.742-752
    • /
    • 2004
  • Many papers have studied computer simulations of elastic bodies undergoing large deflections and large deformations. But there have not been many attempts to check the validity of the numerical formulations because the simulation results could not be matched without correct input data such as material properties and damping effects. In this paper, these values are obtained from real experiment with a high-speed camera and a data acquisition system. The simulation results with the absolute nodal coordinate formulation (ANCF) are compared with the results of real experiments. Two examples, a thin cantilevers beam and a thin plate, are studied to verify whether the simulation results are well matched to experimental results.

Characteristic Map of Hydraulic Buffer for Collision Simulation of Rolling Stock (철도차량의 충돌 시뮬레이션을 위한 유압 완충기의 특성 맵)

  • Kim, Jinseong;Choi, Jeong Heum;Park, Yeong-il
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.1
    • /
    • pp.41-47
    • /
    • 2016
  • The rolling stock is composed of several cars. In order to operate in combination, it is necessary to connect the device, called coupler, between the rolling stocks. When the collision occurs between cars, couplers should be able to absorb the shock. Urban railway has used only rubber absorbers. But recently, the hydraulic buffer has been considered in general railway. In order to know the performance of the buffer it should be conducted to experiments. But whenever this combination change, we should experiments to know a lot of the dynamic behavior of each coupler. These experiments are generally replaced by the simulation, since a lot of time and cost consuming. The quasi-static map of hydraulic buffer obtained by the experiments is required for the simulation. However, the experiments for obtaining such a quasi-static map is costly and time consuming. In this paper, it proposes a method for deriving the quasi-static map of hydraulic buffer from the theoretical model.

A Visual Modeling Environment for Web-based Simulation (웹 기반 시뮬레이션을 위한 시각적 모델 개발 환경)

  • 김기형
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.1
    • /
    • pp.101-111
    • /
    • 1999
  • The Web-based simulation was introduced for conducting simulation experiments in the Internet and the Web. Due to the use of the Java language, the Web-based simulation can have such characteristics as reusability, portability, and the capability of execution on the Web. Most of existing Web-based simulation tools have focused mainly on the development of the runtime simulation libraries and mechanisms on the Web. Thus, the model development work in such Web-based simulation tools still requires hand-written coding of model developers. This paper presents a visual model development environment for the Web-based simulation. The proposed environment provides a framework for model development and animation. To show the effectiveness of the proposed environment, we perform simulation experiments for transaction routing algorithms in a distributed transaction processing system.

  • PDF

Physical Experiments for Large Deformation Problems

  • Yoo, Wan-Suk;Lee, Jeong-Han;Sohn, Jeong-Hyun;Park, Su-Jin
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.705-710
    • /
    • 2003
  • Many papers have studied computer simulations of elastic bodies undergoing large deflections and large deformations. But there have not been many attempts to check the validity of the numerical formulations because the simulation results could not be matched without correct input data such as material properties and damping effects. In this paper, these values are obtained from real experiment with a high-speed camera and a data acquisition system. The simulation results with the absolute nodal coordinate formulation (ANCF) are compared with the results of real experiments. Two examples, a thin cantilever beam and a thin plate, are studied to verify whether the simulation results are well matched to experimental results.

  • PDF

Application of an Optimized Support Vector Regression Algorithm in Short-Term Traffic Flow Prediction

  • Ruibo, Ai;Cheng, Li;Na, Li
    • Journal of Information Processing Systems
    • /
    • v.18 no.6
    • /
    • pp.719-728
    • /
    • 2022
  • The prediction of short-term traffic flow is the theoretical basis of intelligent transportation as well as the key technology in traffic flow induction systems. The research on short-term traffic flow prediction has showed the considerable social value. At present, the support vector regression (SVR) intelligent prediction model that is suitable for small samples has been applied in this domain. Aiming at parameter selection difficulty and prediction accuracy improvement, the artificial bee colony (ABC) is adopted in optimizing SVR parameters, which is referred to as the ABC-SVR algorithm in the paper. The simulation experiments are carried out by comparing the ABC-SVR algorithm with SVR algorithm, and the feasibility of the proposed ABC-SVR algorithm is verified by result analysis. Continuously, the simulation experiments are carried out by comparing the ABC-SVR algorithm with particle swarm optimization SVR (PSO-SVR) algorithm and genetic optimization SVR (GA-SVR) algorithm, and a better optimization effect has been attained by simulation experiments and verified by statistical test. Simultaneously, the simulation experiments are carried out by comparing the ABC-SVR algorithm and wavelet neural network time series (WNN-TS) algorithm, and the prediction accuracy of the proposed ABC-SVR algorithm is improved and satisfactory prediction effects have been obtained.

Characterization of a CLYC Detector and Validation of the Monte Carlo Simulation by Measurement Experiments

  • Kim, Hyun Suk;Smith, Martin B.;Koslowsky, Martin R.;Kwak, Sung-Woo;Ye, Sung-Joon;Kim, Geehyun
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.1
    • /
    • pp.48-55
    • /
    • 2017
  • Background: Simultaneous detection of neutrons and gamma rays have become much more practicable, by taking advantage of good gamma-ray discrimination properties using pulse shape discrimination (PSD) technique. Recently, we introduced a commercial CLYC system in Korea, and performed an initial characterization and simulation studies for the CLYC detector system to provide references for the future implementation of the dual-mode scintillator system in various studies and applications. Materials and Methods: We evaluated a CLYC detector with 95% $^6Li$ enrichment using various gamma-ray sources and a $^{252}Cf$ neutron source, with validation of our Monte Carlo simulation results via measurement experiments. Absolute full-energy peak efficiency values were calculated for gamma-ray sources and neutron source using MCNP6 and compared with measurement experiments of the calibration sources. In addition, behavioral characteristics of neutrons were validated by comparing simulations and experiments on neutron moderation with various polyethylene (PE) moderator thicknesses. Results and Discussion: Both results showed good agreements in overall characteristics of the gamma and neutron detection efficiencies, with consistent ~20% discrepancy. Furthermore, moderation of neutrons emitted from $^{252}Cf$ showed similarities between the simulation and the experiment, in terms of their relative ratios depending on the thickness of the PE moderator. Conclusion: A CLYC detector system was characterized for its energy resolution and detection efficiency, and Monte Carlo simulations on the detector system was validated experimentally. Validation of the simulation results in overall trend of the CLYC detector behavior will provide the fundamental basis and validity of follow-up Monte Carlo simulation studies for the development of our dual-particle imager using a rotational modulation collimator.

High-velocity impact of large caliber tungsten projectiles on ordinary Portland and calcium aluminate cement based HPSFRC and SIFCON slabs -Part II: numerical simulation and validation

  • Gulkan, P.;Korucu, H.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.617-636
    • /
    • 2011
  • We present the numerical implementation, simulation, and validation of the high-velocity impact experiments that have been described in the companion article. In this part, numerical investigations and simulations performed to mimic the tests are presented. The experiments were analyzed by the explicit integration-based software ABAQUS for improved simulations. Targets were modeled with a damaged plasticity model for concrete. Computational results of residual velocity and crater dimensions yielded acceptable results.

Development of Calculating System of Solids Level to Harvest High Solids Potato (Solanum tuberosum L.)

  • Jung, Jae-Youn;Suh, Sang-Gon
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.103-109
    • /
    • 2013
  • Estimating the high tuber solids needs a simulation system on potato growth, and its development should be obtained by using agricultural elements which analyze the relationship between crop growth and agricultural factors. An accurate simulation to predict solids level against climatic change employs a calculation of in vivo energy consumption and bias for growth and induction shape in a slight environmental adaptation. So, to calculate in vivo energy consumption, this study took a concept of estimate of the amount of basal metabolism in each tuber. In the validation experiments, the results of measuring solid accumulation of potatoes harvested at dates suggested by simulation agreed with the actual measured values in each regional field during the growth period of years from 2006 till 2010. The mean values of tuber solids level and inter-annual level variation in validation experiments were predicted well by the simulation model. And also, the results of validation experiments represent that concentration of tuber solids were due mainly to the duration of sunshine, above 190 hours per a month, and the cumulative amount of radiation, above 2,200 $MJ{\cdot}m^{-2}$, of the effective growth period.