• 제목/요약/키워드: Simulation Education

검색결과 1,793건 처리시간 0.027초

클러스터링 알고리즘기반의 상황인식 사용자 분석 (Context-awareness User Analysis based on Clustering Algorithm)

  • 이강환
    • 한국정보통신학회논문지
    • /
    • 제24권7호
    • /
    • pp.942-948
    • /
    • 2020
  • 본 논문에서는 상황인식 속성정보를 이용하여 클러스터링내에서 보다 효율적인 사용자 구분이 가능한 군집적 알고리즘을 제안한다. 일반적으로 클러스터링 데이터를 처리함에 있어 군집 정보내에서 상호관계를 분류하기 위해 제공되는 데이터는 신규 또는 새롭게 입력되는 정보가 비교정보에서 오염된 정보로 처리될 경우, 기존 분류된 군집으로부터 벗어나게 되어 군집성을 저하시키는 요인으로 작용하게 된다. 본 논문에서는 이러한 문제를 해결하기 위해 K-means알고리즘을 이용함에 있어 사용자 인식 정보 추출이 가능한 사용자 군집 분석 방식을 제안하고자 한다. 제안하는 알고리즘은 시스템 내 누적된 정보를 이용하여 자율적인 사용자 군집 특징을 분석하고, 이를 통하여 사용자의 속성간에 따른 클러스터를 구성해 사용자를 구분하게 된다. 제안한 알고리즘은 적용한 모의실험 결과를 통해 다중 사용자를 군집단위로 분류하고 유지하는 측면에서 사용자 관리 시스템이 보다 향상된 적응성을 보여주었다.

농업용 저수지와 토지이용변화가 유역 물순환에 미치는 영향 평가 (Impact Assessment of Agricultural Reservoir and Landuse Changes on Water Circulation in Watershed)

  • 김석현;송정헌;황순호;강문성
    • 한국농공학회논문집
    • /
    • 제63권2호
    • /
    • pp.1-10
    • /
    • 2021
  • Agricultural reservoirs have a great influence on the water circulation in the watershed. It is necessary to evaluate the impact on water circulation by the agricultural reservoir. Therefore, in this study, we simulated the agricultural watershed through linkage of Hydrological Simulation Program Fortran (HSPF) and Module-based hydrologic Analysis for Agricultural watershed (MASA) and evaluated the contribution of the agricultural reservoir to water circulation by watershed water circulation index. As a result of simulating the Idong reservoir watershed through the HSPF-MASA linkage model, the model performance during the validation period was R2 0.74 upstream, 0.78 downstream, and 0.76 reservoir water level, respectively. To evaluate the contribution of agricultural reservoirs, three scenarios (baseline, present state, and present state without reservoir) were simulated, and the water balance differences for each scenario were analyzed. In the evaluation through the agricultural water circulation rate in the watershed, it was found that the water circulation rate increased by 1.1%, and the direct flow rate decreased by 13.6 mm due to the agricultural reservoir. In the evaluation through the Budyko curve, the evaporation index increased by 0.01. Agricultural reservoirs reduce direct runoff and increase evapotranspiration, which has a positive effect on the water circulation.

이동 장애물을 고려한 DQN 기반의 Mapless Navigation 및 학습 시간 단축 알고리즘 (Mapless Navigation Based on DQN Considering Moving Obstacles, and Training Time Reduction Algorithm)

  • 윤범진;유승열
    • 한국정보통신학회논문지
    • /
    • 제25권3호
    • /
    • pp.377-383
    • /
    • 2021
  • 최근 4차 산업혁명에 따라 공장, 물류창고, 서비스영역에서 유연한 물류이송을 위한 자율 이동형 모바일 로봇의 사용이 증가하고 있다. 대규모 공장에서는 Simultaneous Localization and Mapping(SLAM)을 수행하기 위하여 많은 수작업이 필요하기 때문에 개선된 모바일 로봇 자율 주행에 대한 필요성이 대두되고 있다. 이에 따라 본 논문에서는 고정 및 이동 장애물을 피해 최적의 경로로 주행하는 Mapless Navigation에 대한 알고리즘을 제안하고자 한다. Mapless Navigation을 위하여 Deep Q Network(DQN)을 통해 고정 및 이동 장애물을 회피하도록 학습하였고 두 종류의 장애물 회피에 대하여 각각 정확도 90%, 93%를 얻었다. 또한 DQN은 많은 학습 시간을 필요로 하는데 이를 단축하기 위한 목표의 크기 변화 알고리즘을 제안하고 이를 시뮬레이션을 통하여 단축된 학습시간과 장애물 회피 성능을 확인하였다.

스퍼드빌: 제2언어로서의 영어학습을 위한 마인크래프트 게임 설계 (Spudsville: Designing a Minecraft Game for learning teaching English as a Second Language)

  • 백영균;김정겸;샘 아이젠버그
    • 융합정보논문지
    • /
    • 제12권4호
    • /
    • pp.143-157
    • /
    • 2022
  • 이 연구의 목적은 마인크래프트의 몰입형 게임 환경인 스퍼드빌을 디자인하여 학습자가 영어를 습득할 수 있도록 효과적으로 돕는 것이다. 마인크래프트를 사용하여 성공적인 학습 경험을 만들기 위해, 본 연구에서는 애자일 모델과 디자인 사고 접근법을 채택했다. 우선 학습자들의 요구를 분석하기 위해 광범위한 문헌 검토를 수행하였으며 이후의 분석 단계에서 수집된 자료를 바탕으로 마인크래프트 월드를 설계하고 개발하였다. 연구자들은 인지주의 학습 모델을 스퍼드빌에 적용하면 학습자가 정보를 처리하는 방법에 대한 더 많은 통찰력을 제공할 수 있고 한편으로 구성주의 및 행동주의 접근 방식을 구현하는 것이 또한 이점이 있다는 것을 알게 되었다. 마인크래프트 게임을 통하여 영어학습의 효과를 향상시킬 수 있으며 게임기반학습이 언어학습에 도움이 될 수 있는 잠재력을 확인할 수 있었다.

WALANT: A Discussion of Indications, Impact, and Educational Requirements

  • Shahid, Shahab;Saghir, Noman;Saghir, Reyan;Young-Sing, Quillan;Miranda, Benjamin H.
    • Archives of Plastic Surgery
    • /
    • 제49권4호
    • /
    • pp.531-537
    • /
    • 2022
  • Wide-awake, local anesthesia, no tourniquet (WALANT) is a technique that removes the requirement for operations to be performed with a tourniquet, general/regional anesthesia, sedation or an anesthetist. We reviewed the WALANT literature with respect to the diverse indications and impact of WALANT to discuss the importance of future surgical curriculum integration. With appropriate patient selection, WALANT may be used effectively in upper and lower limb surgery; it is also a useful option for patients who are unsuitable for general/regional anesthesia. There is a growing body of evidence supporting the use of WALANT in more complex operations in both upper and lower limb surgery. WALANT is a safe, effective, and simple technique associated with equivalent or superior patient pain scores among other numerous clinical and cost benefits. Cost benefits derive from reduced requirements for theater/anesthetic personnel, space, equipment, time, and inpatient stay. The lack of a requirement for general anesthesia reduces aerosol generating procedures, for example, intubation/high-flow oxygen, hence patients and staff also benefit from the reduced potential for infection transmission. WALANT provides a relatively, but not entirely, bloodless surgical field. Training requirements include the surgical indications, volume calculations, infiltration technique, appropriate perioperative patient/team member communication, and specifics of each operation that need to be considered, for example, checking of active tendon glide versus venting of flexor tendon pulleys. WALANT offers significant clinical, economic, and operative safety advantages when compared with general/regional anesthesia. Key challenges include careful patient selection and the comprehensive training of future surgeons to perform the technique safely.

클러스터링 알고리즘기반의 COVID-19 상황인식 분석 (Analysis of COVID-19 Context-awareness based on Clustering Algorithm)

  • 이강환
    • 한국정보통신학회논문지
    • /
    • 제26권5호
    • /
    • pp.755-762
    • /
    • 2022
  • 본 논문에서는 학습 예측이 가능한 군집적 알고리즘으로 COVID-19에서 상황인식정보인 질병의 속성정보와 클러스터링를 이용한 군집적 알고리즘을 제안한다. 클러스터링 내에서 처리되는 군집 데이터는 신규 또는 새롭게 입력되는 정보가 상호관계를 예측하기 위해 분류 제공되는데, 이때 새롭게 입력되는 정보가 비교정보에서 오염된 정보로 처리되면 기존 분류된 군집으로부터 벗어나게 되어 군집성을 저하시키는 요인으로 작용하게 된다. 본 논문에서는 COVID-19에서의 질병속성 정보내 K-means알고리즘을 이용함에 있어 이러한 문제를 해결하기 위해 질병 상호관계 정보 추출이 가능한 사용자 군집 분석 방식을 제안하고자 한다. 제안하는 알고리즘은 자율적인 사용자 군집 특징의 상호관계를 분석학습하고 이를 통하여 사용자 질병속성간에 따른 클러스터를 구성해 사용자의 누적 정보로부터 클러스터의 중심점을 제공하게 된다. 논문에서 제안된 COVID-19의 다중질병 속성정보군집단위로 분류하고 학습하는 알고리즘은 적용한 모의실험 결과를 통해 사용자 관리 시스템의 예측정확도가 학습과정에서 향상됨을 보여주었다.

Study on shear fracture behavior of soft filling in concrete specimens: Experimental tests and numerical simulation

  • Lei, Zhou;Vahab, Sarfarazi;Hadi, Haeri;Amir Aslan, Naderi;Mohammad Fatehi, Marji;Fei, Wu
    • Structural Engineering and Mechanics
    • /
    • 제85권3호
    • /
    • pp.337-351
    • /
    • 2023
  • In this paper, the shear behavior of soft filling in rectangular-hollow concrete specimens was simulated using the 2D particle flow code (PFC2D). The laboratory-measured properties were used to calibrate some PFC2D micro-properties for modeling the behavior of geo-materials. The dimensions of prepared and modeled samples were 100 mm×100 mm. Some disc type narrow bands were removed from the central part of the model and different lengths of bridge areas (i.e., the distance between internal tips of two joints) with lengths of 30 mm, 50 mm, and 70 mm were produced. Then, the middle of the rectangular hollow was filled with cement material. Three filling sizes with dimensions of 5 mm×5 mm, 10 mm×5 mm, and 15 mm×5 mm were provided for different modeled samples. The parallel bond model was used to calibrate and re-produce these modeled specimens. Therefore, totally, 9 different types of samples were designed for the shear tests in PFC2D. The shear load was gradually applied to the model under a constant loading condition of 3 MPa (σc/3). The loading was continued till shear failure occur in the modeled concrete specimens. It has been shown that both tensile and shear cracks may occur in the fillings. The shear cracks mainly initiated from the crack (joint) tips and coalesced with another one. The shear displacements and shear strengths were both increased as the filling dimensions increased (for the case of a bridge area with a particular fixed length).

A new method of predicting hotspot stresses for longitudinal attachments with reduced element sensitivities

  • Li, Chun Bao;Choung, Joonmo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.379-395
    • /
    • 2021
  • For the complicated structural details in ships and offshore structures, the traditional hotspot stress approaches are known to be sensitive to the element variables of element topologies, sizes, and integration schemes. This motivated to develop a new approach for predicting reasonable hotspot stresses, which is less sensitive to the element variables and easy to be implemented the real marine structures. The three-point bending tests were conducted for the longitudinal attachments with the round and rectangular weld toes. The tests were reproduced in the numerical simulations using the solid and shell element models, and the simulation technique was validated by comparing the experimental stresses with the simulated ones. This paper considered three hotspot stress approaches: the ESM method based on surface stress extrapolation, the Dong's method based on nodal forces along a weld toe, and the proposed method based on nodal forces perpendicular to an imaginary vertical plane at a weld toe. In order to study the element sensitivities of each method, 16 solid element models and 8 shell element models were generated under the bending and tension loads, respectively. The element sensitivity was analyzed in terms of Stress Concentration Factors (SCFs) in viewpoints of two statistical quantities of mean and bias with respect to the reference SCFs. The average SCFs predicted by the proposed method were remarkably in good agreement with the reference SCFs based on the experiments and the ship rules. Negligibly small Coefficients of Variation (CVs) of the SCFs, which is measure of statistical bias, were drawn by the proposed method.

A Study on the Effects of All-in-one Automatic Fire Shutters Installed in High School on Evacuation Time

  • Lee, Soon Beom;Kong, Ha Sung;Lee, Jai Young
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제14권3호
    • /
    • pp.182-192
    • /
    • 2022
  • This study analyzed the effects of the all-in-one automatic fire shutter (hereinafter referred to as "all-in-one shutter") installed along the fire compartment in a five-story high school building on the evacuation time by using the Pathfinder simulation program. When the all-in-one shutter was added as a new variable, the evacuation time was delayed, indicating insufficient evacuation safety. The evacuation time exceeded the appropriate standard when the evacuation exit was designated to the students in the present state of being placed on the 2nd, 3rd, and 4th floors and the all-in-one shutter was activated. When students were placed on the 1st, 2nd and 3rd floors under the same conditions, the evacuation time was also greatly exceeded. However, when the width of the entrance was set to 130cm, the evacuation time was almost the same as when the all-in-one shutter was not installed. In high-rise school buildings, the bottleneck caused by all-in-one shutters is becoming a major factor in evacuation barriers. To ensure the evacuation safety of school buildings, it has been judged that evacuation education and training to predict the evacuation time required through the all-in-one shutter entrance and induce an evacuation procedure suitable for the standard evacuation time should be carried out in parallel. The implications of this study and suggestions for effective fire compartments and follow-up studies were discussed.

Investigation of the behavior of a tunnel subjected to strike-slip fault rupture with experimental approach

  • Zhen Cui;Tianqiang Wang;Qian Sheng;Guangxin Zhou
    • Geomechanics and Engineering
    • /
    • 제33권5호
    • /
    • pp.477-486
    • /
    • 2023
  • In the studies on fault dislocation of tunnel, existing literatures are mainly focused on the problems caused by normal and reverse faults, but few on strike-slip faults. The paper aims to research the deformation and failure mechanism of a tunnel under strike-slip faulting based on a model test and test-calibrated numerical simulation. A potential faulting hazard condition is considered for a real water tunnel in central Yunnan, China. Based on the faulting hazard to tunnel, laboratory model tests were conducted with a test apparatus that specially designed for strike-slip faults. Then, to verify the results obtained from the model test, a finite element model was built. By comparison, the numerical results agree with tested ones well. The results indicated that most of the shear deformation and damage would appear within fault fracture zone. The tunnel exhibited a horizontal S-shaped deformation profile under strike-slip faulting. The side walls of the tunnel mainly experience tension and compression strain state, while the roof and floor of the tunnel would be in a shear state. Circular cracks on tunnel near fault fracture zone were more significant owing to shear effects of strike-slip faulting, while the longitudinal cracks occurred at the hanging wall.