• Title/Summary/Keyword: Simulation Approach

Search Result 5,332, Processing Time 0.037 seconds

Estimation Method of Predicted Time Series Data Based on Absolute Maximum Value (최대 절대값 기반 시계열 데이터 예측 모델 평가 기법)

  • Shin, Ki-Hoon;Kim, Chul;Nam, Sang-Hun;Park, Sung-Jae;Yoo, Sung-Soo
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.103-110
    • /
    • 2018
  • In this paper, we introduce evaluation method of time series prediction model with new approach of Mean Absolute Percentage Error(hereafter MAPE) and Symmetric Mean Absolute Percentage Error(hereafter sMAPE). There are some problems using MAPE and sMAPE. First MAPE can't evaluate Zero observation of dataset. Moreover, when the observed value is very close to zero it evaluate heavier than other methods. Finally it evaluate different measure even same error between observations and predicted values. And sMAPE does different evaluations are made depending on whether the same error value is over-predicted or under-predicted. And it has different measurement according to the each sign, even if error is the same distance. These problems were solved by Maximum Mean Absolute Percentage Error(hereafter mMAPE). we used the absolute maximum of observed value as denominator instead of the observed value in MAPE, when the value is less than 1, removed denominator then solved the problem that the zero value is not defined. and were able to prevent heavier measurement problem. Also, if the absolute maximum of observed value is greater than 1, the evaluation values of mMAPE were compared with those of the other evaluations. With Beijing PM2.5 temperature data and our simulation data, we compared the evaluation values of mMAPE with other evaluations. And we proved that mMAPE can solve the problems that we mentioned.

Development and Application of Two-Dimensional Numerical Tank using Desingularized Indirect Boundary Integral Equation Method (비특이화 간접경계적분방정식방법을 이용한 2차원 수치수조 개발 및 적용)

  • Oh, Seunghoon;Cho, Seok-kyu;Jung, Dongho;Sung, Hong Gun
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.447-457
    • /
    • 2018
  • In this study, a two-dimensional fully nonlinear transient wave numerical tank was developed using a desingularized indirect boundary integral equation method. The desingularized indirect boundary integral equation method is simpler and faster than the conventional boundary element method because special treatment is not required to compute the boundary integral. Numerical simulations were carried out in the time domain using the fourth order Runge-Kutta method. A mixed Eulerian-Lagrangian approach was adapted to reconstruct the free surface at each time step. A numerical damping zone was used to minimize the reflective wave in the downstream region. The interpolating method of a Gaussian radial basis function-type artificial neural network was used to calculate the gradient of the free surface elevation without element connectivity. The desingularized indirect boundary integral equation using an isolated point source and radial basis function has no need for information about the element connectivity and is a meshless method that is numerically more flexible. In order to validate the accuracy of the numerical wave tank based on the desingularized indirect boundary integral equation method and meshless technique, several numerical simulations were carried out. First, a comparison with numerical results according to the type of desingularized source was carried out and confirmed that continuous line sources can be replaced by simply isolated sources. In addition, a propagation simulation of a $2^{nd}$-order Stokes wave was carried out and compared with an analytical solution. Finally, simulations of propagating waves in shallow water and propagating waves over a submerged bar were also carried and compared with published data.

Water resources potential assessment of ungauged catchments in Lake Tana Basin, Ethiopia

  • Damtew, Getachew Tegegne;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.217-217
    • /
    • 2015
  • The objective of this study was mainly to evaluate the water resources potential of Lake Tana Basin (LTB) by using Soil and Water Assessment Tool (SWAT). From SWAT simulation of LTB, about 5236 km2 area of LTB is gauged watershed and the remaining 9878 km2 area is ungauged watershed. For calibration of model parameters, four gauged stations were considered namely: Gilgel Abay, Gummera, Rib, and Megech. The SWAT-CUP built-in techniques, particle swarm optimization (PSO) and generalized likelihood uncertainty estimation (GLUE) method was used for calibration of model parameters and PSO method were selected for the study based on its performance results in four gauging stations. However the level of sensitivity of flow parameters differ from catchment to catchment, the curve number (CN2) has been found the most sensitive parameters in all gauged catchments. To facilitate the transfer of data from gauged catchments to ungauged catchments, clustering of hydrologic response units (HRUs) were done based on physical similarity measured between gauged and ungauged catchment attributes. From SWAT land use/ soil use/slope reclassification of LTB, a total of 142 HRUs were identified and these HRUs are clustered in to 39 similar hydrologic groups. In order to transfer the optimized model parameters from gauged to ungauged catchments based on these clustered hydrologic groups, this study evaluates three parameter transfer schemes: parameters transfer based on homogeneous regions (PT-I), parameter transfer based on global averaging (PT-II), and parameter transfer by considering Gilgel Abay catchment as a representative catchment (PT-III) since its model performance values are better than the other three gauged catchments. The performance of these parameter transfer approach was evaluated based on values of Nash-Sutcliffe efficiency (NSE) and coefficient of determination (R2). The computed NSE values was found to be 0.71, 0.58, and 0.31 for PT-I, PT-II and PT-III respectively and the computed R2 values was found to be 0.93, 0.82, and 0.95 for PT-I, PT-II, and PT-III respectively. Based on the performance evaluation criteria, PT-I were selected for modelling ungauged catchments by transferring optimized model parameters from gauged catchment. From the model result, yearly average stream flow for all homogeneous regions was found 29.54 m3/s, 112.92 m3/s, and 130.10 m3/s for time period (1989 - 2005) for region-I, region-II, and region-III respectively.

  • PDF

Securing Safety in Collaborative Cyber-Physical Systems Through Fault Criticality Analysis (협업 사이버물리시스템의 결함 치명도 분석을 통한 안전성 확보)

  • Hussain, Manzoor;Ali, Nazakat;Hong, Jang-Eui
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.8
    • /
    • pp.287-300
    • /
    • 2021
  • Collaborative Cyber-Physical Systems (CCPS) are those systems that contain tightly coupled physical and cyber components, massively interconnected subsystems, and collaborate to achieve a common goal. The safety of a single Cyber-Physical System (CPS) can be achieved by following the safety standards such as ISO 26262 and IEC 61508 or by applying hazard analysis techniques. However, due to the complex, highly interconnected, heterogeneous, and collaborative nature of CCPS, a fault in one CPS's components can trigger many other faults in other collaborating CPSs. Therefore, a safety assurance technique based on fault criticality analysis would require to ensure safety in CCPS. This paper presents a Fault Criticality Matrix (FCM) implemented in our tool called CPSTracer, which contains several data such as identified fault, fault criticality, safety guard, etc. The proposed FCM is based on composite hazard analysis and content-based relationships among the hazard analysis artifacts, and ensures that the safety guard controls the identified faults at design time; thus, we can effectively manage and control the fault at the design phase to ensure the safe development of CPSs. To justify our approach, we introduce a case study on the Platooning system (a collaborative CPS). We perform the criticality analysis of the Platooning system using FCM in our developed tool. After the detailed fault criticality analysis, we investigate the results to check the appropriateness and effectiveness with two research questions. Also, by performing simulation for the Platooning, we showed that the rate of collision of the Platooning system without using FCM was quite high as compared to the rate of collisions of the system after analyzing the fault criticality using FCM.

Analysis of solute transport in rivers using a stochastic storage model (확률론적 저장대모형을 이용한 하천에서의 물질혼합거동 해석)

  • Kim, Byunguk;Seo, Il Won;Kwon, Siyoon;Jung, Sung Hyun;Yun, Se Hun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.5
    • /
    • pp.335-345
    • /
    • 2021
  • The one-dimensional solute transport models have been developed for recent decades to predict behavior and fate of solutes in rivers. Transient storage model (TSM) is the most popular model because of its simple conceptualization to consider the complexity of natural rivers. However, the TSM is highly dependent on its parameters which cannot be directly measured. In addition, the TSM interprets the late-time behavior of concentration curves in the shape of an exponential function, which has been evaluated as not suitable for actual solute behavior in natural rivers. In this study, we suggested a stochastic approach to the solute transport analysis. We delineated the model development and model application to a natural river, and compared the results of the proposed model to those of the TSM. To validate the proposed model, a tracer test was carried out in the 4.85 km reach of Gam Creek, one of the first-order tributaries of Nakdong River, South Korea. As a result of comparing the power-law slope of the tail of breakthrough curves, the simulation results from the stochastic storage model yielded the average error rate of 0.24, which is more accurate than the 14.03 and 1.87 from advection-dispersion model and TSM, respectively. This study demonstrated the appropriateness of the power-law residence time distribution to the hyporheic zone of the Gam Creek.

Structural Behavior Evaluation of a Cable-Stayed Bridge Subjected to Aircraft Impact: A Numerical Study (항공기 충돌에 대한 사장교의 구조거동 평가: 수치해석적 접근)

  • Choi, Keunki;Lee, Jungwhee;Chung, Chul-Hun;An, Dongwoo;Yoon, Jaeyong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.3
    • /
    • pp.137-149
    • /
    • 2021
  • Cable-stayed bridges are infrastructure facilities of a highly public nature; therefore, it is essential to ensure operational safety and prompt response in the event of a collapse or damage caused by natural and social disasters. Among social disasters, impact accidents can occur in bridges when a vehicle collides with a pier or when crashes occur due to aircraft defects. In the case of offshore bridges, ship collisions will occur at the bottom of the pylon. In this research, a procedure to evaluate the structural behavior of a cable-stayed bridge for aircraft impact is suggested based on a numerical analysis approach, and the feasibility of the procedure is demonstrated by performing an example assessment. The suggested procedure includes 1) setting up suitable aircraft impact hazard scenarios, 2) structural modeling considering the complex behavior mechanisms of cable-stayed bridges, and 3) structural behavior evaluation of cable-stayed bridges using numerical impact simulation. It was observed that the scenario set in this study did not significantly affect the target bridge. However, if impact analysis is performed through various scenarios in the future, the load position and critical load level to cause serious damage to the bridge could be identified. The scenario-based assessment process employed in this study is expected to facilitate the evaluation of bridge structures under aircraft impact in both existing bridges and future designs.

Calibration of Load and Resistance Factors for Breakwater Foundation Design. Application on Different Types of Superstructures (방파제 기초설계를 위한 하중저항계수의 보정(다른 형식의 상부구조 적용))

  • Huh, Jungwon;Doan, Nhu Son;Mac, Van Ha;Dang, Van Phu;Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.287-292
    • /
    • 2021
  • Load and resistance factor design is an efficient design approach that provides a system of consistent design solutions. This study aims to determine the load and resistance factors needed for the design of breakwater foundations within a probabilistic framework. In the study, four typical types of Korean breakwaters, namely, rubble mound breakwaters, vertical composite caisson breakwaters, perforated caisson breakwaters, and horizontal composite breakwaters, are investigated. The bearing capacity of breakwater foundations under wave loading conditions is thoroughly examined. Two levels of the target reliability index (RI) of 2.5 and 3.0 are selected to implement the load and resistance factors calibration using Monte Carlo simulations with 100,000 cycles. The normalized resistance factors are found to be lower for the higher target RI as expected. Their ranges are from 0.668 to 0.687 for the target RI of 2.5 and from 0.576 to 0.634 for the target RI of 3.0.

Evaluation of extreme rainfall estimation obtained from NSRP model based on the objective function with statistical third moment (통계적 3차 모멘트 기반의 목적함수를 이용한 NSRP 모형의 극치강우 재현능력 평가)

  • Cho, Hemie;Kim, Yong-Tak;Yu, Jae-Ung;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.7
    • /
    • pp.545-556
    • /
    • 2022
  • It is recommended to use long-term hydrometeorological data for more than the service life of the hydraulic structures and water resource planning. For the purpose of expanding rainfall data, stochastic simulation models, such as Modified Bartlett-Lewis Rectangular Pulse (BLRP) and Neyman-Scott Rectangular Pulse (NSRP) models, have been widely used. The optimal parameters of the model can be estimated by repeatedly comparing the statistical moments defined through a combination of parameters of the probability distribution in the optimization context. However, parameter estimation using relatively small observed rainfall statistics corresponds to an ill-posed problem, leading to an increase in uncertainty in the parameter estimation process. In addition, as shown in previous studies, extreme values are underestimated because objective functions are typically defined by the first and second statistical moments (i.e., mean and variance). In this regard, this study estimated the parameters of the NSRP model using the objective function with the third moment and compared it with the existing approach based on the first and second moments in terms of estimation of extreme rainfall. It was found that the first and second moments did not show a significant difference depending on whether or not the skewness was considered in the objective function. However, the proposed model showed significantly improved performance in terms of estimation of design rainfalls.

Collection of Philosophical Concepts for Video Games -Theory of Art in the Age of Artificial Intelligence by Shinji Matsunaga's The Aesthetics of Video Games (인간과 컴퓨터가 공유하는 인공적인 놀이에 관한 개념상자 -마쓰나가 신지의 『비디오 게임의 미학』이 체계화하는 인공지능시대의 예술과 유희 이론)

  • Kim, Il-Lim
    • Journal of Popular Narrative
    • /
    • v.26 no.4
    • /
    • pp.215-237
    • /
    • 2020
  • This paper is written to introduce and review Shinji Matsunaga's The Aesthetics of Video Games which published in Japan in 2018. Shinji Matsunaga has studied video games from a philosophical and aesthetic perspective. In The Aesthetics of Video Games, he took video games as a hybrid form of traditional games. Shinji Matsunaga particularly notes that video games can design human behaviors and experiences. From this point of view, he tries to construct a theoretical framework that will be able to describe the ways of signification in games and fiction respectively. In previous studies, video games have been mainly discussed in the context of cultural studies and entertainment culture in Japan. The Aesthetics of Video Games is distinguished from the previous studies in the following points. First, The Aesthetics of Video Games pioneered the method of studying video games in art theory. Second, it established various types of relationships with video games and traditional aesthetic concepts. Third, this book connects new concepts that emerged in the age of artificial intelligence to video games as an aesthetic action. Through this work, not only video games were discussed academically, but also the fields of aesthetics and art were expanded. The Aesthetics of Video Game is like a collection of philosophical concepts for video games. Through this book, it can be said that the path for artificial intelligence to approach human secrets is closer than before.

Factors Affecting the Self-Directed Learning Ability of Dental Hygiene Students (치위생과 학생의 자기 주도적 학습능력에 영향을 미치는 요인)

  • Hyun-Sook, Kang;Mi-Hyun, So;Younyoung, Cho
    • The Journal of Korean Society for School & Community Health Education
    • /
    • v.23 no.4
    • /
    • pp.17-28
    • /
    • 2022
  • Objectives: This study aimed to provide the measures for improving the self-directed learning ability and the reference data for substantializing the educational programs by verifying the main factors affecting the self-directed learning ability of dental hygiene students in reality when the learners' autonomy is emphasized than ever. Methods: From June 20 to July 4, 2022, an online survey was conducted targeting total 218 dental hygiene students. The collected data was analyzed by using the SPSS Program Version 22.0. Results: First, in the results of analyzing differences in detailed items of self-directed learning ability according to the general characteristics, the 'students who entered the department of dental hygiene by considering their aptitude and interest' showed higher results than the 'students who entered the department by considering their high school record'. Second, when the academic efficacy, study immersion, and problem-solving ability of dental hygiene students were higher, their self-directed learning ability was also high. Third, the factor that had the greatest effect on self-directed learning ability of dental hygiene students was problem-solving ability, which was followed by academic efficacy and study immersion. Conclusion: Putting together the results above, in order to cultivate the problem-solving ability of dental hygiene students, it would be necessary to operate the problem-solving-centered simulation course that could foster critical thinking, interactions with others, and creative approach and solution to problems in dental medical site. It would be also possible to improve their academic efficacy by applying the learning mentoring & one-to-one learning counseling program, and also strengthening proper feedbacks for learners. Moreover, the study immersion could be strengthened by developing and operating the emotion-based learning motivation program & learning coaching program through the process of verifying the potential and growth needs of learners, exploring one's own resources through learning diagnosis/introspection, and exploring the career-related vision for strengthening the learning motivation, which could have positive effects on the improvement of self-directed learning ability.