• Title/Summary/Keyword: Simulation Acceleration

Search Result 937, Processing Time 0.034 seconds

Simulation of Machined Surface Considering Acceleration Signal in High Speed End Milling (고속 엔드밀 가공시 가속도 신호를 고려한 가공표면의 시뮬레이션)

  • Lee, Gi-Yong;Gang, Myeong-Chang;Lee, Deuk-U;Kim, Jeong-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.228-234
    • /
    • 2001
  • To obtain precise machined surface and high productivity in machining, high speed end milling has beed studied recently. Though high speed end milling is explicitly effective for precision surface generation geometrically, tool deflection, chatter vibration and frequency characteristics of end milling system deteriorate the theoretical surface. In this study, simulation algorithm and programming method are suggested to simulate machined surface using acceleration signal in high speed end milling. This simulation is conducted by considering vibrational effect of spindle system which was not considered by other investigators. Good agreements were obtained between simulated results and experimental results.

The simulation of INS error due to gimbal servo dynamics (김블 서어보 다이나믹스에 의한 INS 오차 시뮬레이션)

  • 김현백;정태호;오문수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.281-285
    • /
    • 1986
  • In this paper, the characteristics of disturbance torque of gimbal servo dynamics are studied, and the simulation methods of gimbal servo dynamics and INS error due to angular rate and linear acceleration of vehicle are proposed. In results of the simulation for a specific INS, it is estimated that INS velocity error due to gimbal servo dynamics is nearly proportional to square of vehicle acceleration.

  • PDF

Performance of water-jet pump under acceleration

  • Wu, Xian-Fang;Li, Ming-Hui;Liu, Hou-Lin;Tan, Ming-Gao;Lu, You-Dong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.794-803
    • /
    • 2021
  • The instantaneous acceleration affects the performance of the water-jet pump obviously. Here, based on the user-defined function, the method to simulate the inner flow in water-jet pumps under acceleration conditions was established. The effects of two different acceleration modes (linear acceleration and exponential acceleration) and three kinds of different acceleration time (0.5s, 1s and 2s) on the performance of the water-jet pump were analyzed. The results show that the thrust and the pressure pulsation under exponential acceleration are lower than that under linear acceleration at the same time; the vapor volume fraction in the impeller under linear acceleration is 27.3% higher than that under exponential acceleration. As the acceleration time increases, the thrust gradually increases and the pressure pulsation amplitude at the impeller inlet and outlet gradually decreases, while the law of pressure pulsation is the opposite at the diffuser outlet. The main frequency of pressure pulsation at the impeller outlet is different under different acceleration time. The research results can provide some reference for the optimal design of water-jet pumps.

Acceleration Optimization of a High-speed LCD Transfer Crane Using Finite Jerk (고속 LCD 이송 시스템의 진동감소를 위한 Finite Jerk 적용 가속도 최적화)

  • Song Tae-Jin;Hong Dae-Sun;Kim Ho-Jong;Bang Duck-Je;Chung Won-Jee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.110-117
    • /
    • 2006
  • This paper presents the acceleration optimization of a high-speed LCD (Liquid Crystal Display) transfer system for the minimization of vibration. To reduce vibration is one of key requirements for the dynamic control of a high-speed LCD transfer system. In this paper, the concept of finite jerk (the first derivative of acceleration) has been introduced for realizing input acceleration. The profile of finite jerk has been optimized using a genetic algorithm so that vibration effect can be minimized. In order to incorporate a genetic algorithm, the dynamic model of a LCD transfer system which is realized by using the ADAMS software has been linked to the simulation system constructed by the MATLAB. The simulation results illustrated that the duration of finite jerk can be optimized so as to minimize the magnitude of vibration. It has been also shown that the acceleration optimization with finite jerk can make the high-speed motion of a LCD transfer system result in low vibration, compared with the conventional motion control with trapezoidal velocity profile.

A Study on the Techniques to Evaluate Carbody Accelerations after a Train Collision (충돌 후 열차의 차체 가속도 평가 기법 연구)

  • Kim, Joon-Woo;Koo, Jeong-Seo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.5
    • /
    • pp.477-485
    • /
    • 2010
  • In this study, we suggested several approaches to evaluate the collision acceleration of a carbody under the article 16 of the Korean rolling stock safety regulations. There are various methods to evaluate the rigid body accelerations such as the displacement comparison method by double integration of filtered acceleration data, the velocity comparison method by direct integration of filtered acceleration data, and the analysis method of a velocity-time curve. We compared these methods one another using the 1D dynamic simulation model of Korean high-speed EMU composed of nonlinear springs or bars, dampers, and masses. From the simulation results, the velocity-time curve analysis method and the displacement comparison method are recommended to filter high frequency oscillations and evaluate the maximum and average accelerations of a carbody after a train collision.

Active contrl of an ambulane\ce stretcher: Simulation study

  • Sagawa, K.;Inooka, H.;Ino-Oka, E.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.100-105
    • /
    • 1994
  • In this paper, we discuss a method for design of an ambulance stretcher which call decrease blood pressure fluctuation caused by ambulance acceleration. Recently, a lot of stretchers which can isolate the vertical vibration to reduce body resonances (4-10 Hz) have been used during ambulance transport. However, we have found that blood pressure of a patient laying in the stretcher fluctuates when the ambulance accelerates or decelerates. Since the enforced change of the blood pressure may deteriorate the patent's condition, a stretcher to cancel head-to-foot acceleration and to decrease the blood pressure variation (BPV) is expected for safe transport. We propose a method to design a stretcher which is tilted according to an adequate angle to cancel head-to-foot acceleration by gravity when the ambulance accelerates or decelerates. A control method of the stretcher is constructed by means of simulation analysis using acceleration data measured during ambulance transport. It is confirmed that the active controlled stretcher proposed has good performance for the BPV reduction.

  • PDF

Acceleration based Passenger Evacuation Simulation Considering Rotation of Passenger on Horizontal Plane (평면상 승객의 회전 자세를 고려한 가속도 기반의 승객 탈출 분석 시뮬레이션)

  • Park, Kwang-Phil;Cho, Yoon-Ok;Ha, Sol;Lee, Kyu-Yeul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.4
    • /
    • pp.306-313
    • /
    • 2010
  • In this paper, an acceleration based passenger evacuation simulation is performed. In order to describe a passenger‘s behavior in an evacuation situation, a passenger is modeled as a rigid body which translates in the horizontal plane and rotates along the vertical axis. The position and rotation angle of a passenger are calculated by solving the dynamic equations of motions at each time step. The destination force, the contact force, and the group force are considered as external forces and the moments due to each force are also considered. With the passenger model proposed in this paper, the test problems in International Maritime Organization, Maritime Safety Committee/Circulation 1238(IMO MSC/Circ.1238) are implemented and the effects of passenger rotation on the evacuation time are confirmed.

Gain-scheduling of Acceleration Estimator for Low-velocity Measurement with Encoders

  • Son, Seung-Woo;Lee, Sang-Hun;Hur, Jong-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1853-1857
    • /
    • 2005
  • In most of motor-driven motion control systems, an encoder is used to measure a position of the motor and the velocity information is obtained by measuring the position increment over a sampling period. The quantization effect due to limited resolution of the encoder induces some measurement errors, and consequently causes deterioration of the motion performance especially in low velocity. In this paper, we propose a gain-scheduled acceleration estimator which works in wider velocity range than the original acceleration estimator. We investigate and analyze characteristics of the velocity measurement mechanism which takes into account the quantization effect of the encoder. Next, we introduce the acceleration estimator and propose a gain-scheduled acceleration estimator. The bandwidth of the gain-scheduled acceleration estimator is automatically adjusted by the velocity command. Finally, its performance is evaluated by simulation and experiment, and the results are compared with those of a conventional method and the original acceleration estimator.

  • PDF

Analysis of Acceleration Performance Improvement for Electric Vehicle Using 2-Speed Transmission (2단변속기를 사용한 전기차의 가속성능 향상 분석)

  • Kim, Jeong-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.84-90
    • /
    • 2022
  • In this study, the acceleration performance improvement was analyzed for a 2-speed transmission applied EV. An EV simulator was developed to analyze the EV acceleration performance. The EV simulator includes a load transfer model between the front and rear. Thus, the EV simulator can analyze the acceleration performance difference between the front-and rear-wheel drive EVs. From the simulation results, it is deduced that the acceleration performance can be improved by 7.96% for the front-wheel drive EV and 16.10% for the rear-wheel drive EV. The 2-speed transmission can improve the acceleration performance without decreasing its maximum velocity. Moreover, the 2-speed transmission can improve the acceleration performance of the rear wheel drive more than that of the front-wheel drive EV.

A study of turbine acceleration generated following to AVR fault of Wolsong #1 main generator. (주발전기용 자동 전압조정기의 고장에 따른 터빈 가속도 발생 사고 검토)

  • Chang, Tae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.74-77
    • /
    • 1992
  • During normal operation of 100% FP Reactor power(TBN/GEN output:690MWe), several times of acceleration phenomena has been generated on the turbine generator-of Wolsong #1 NPP. It was concluded that the acceleration occured following big sudden drop of the terminal voltage of main generator due to AVR potentiometer fault. The cause of turbine acceleration is reviewed with a several records and demonstrated by computer simulation, also presents a countermeasure of its trouble.

  • PDF