• Title/Summary/Keyword: Simulated RF signal

Search Result 42, Processing Time 0.02 seconds

A Study on Evaluation of Jamming Performance on SAR Satellite (SAR 위성에 대한 재밍 효과 분석)

  • Lee, Young-Joong;Kim, In-Seon;Park, Joo-Rae;Kwak, Hyun-Kyu;Shin, Wook-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.252-257
    • /
    • 2010
  • SAR has pulse compression gain through the process including range and azimuth. Efficient jammers against the SAR with simulated elements are evaluated in the view of power and SAR image. In this paper, J/S is analysed for SAR with RF propagation equation firstly. Several jamming signals on SAR signal are made into SAR image through pulse compression process. Objective jamming performance is evaluated using euclidean distance.

A Compact Integrated RF Transceiver Module for 2.4 GHz Band Using LTCC Technology (LTCC 기술을 적용한 집적화된 2.4 GHz 대역 무선 송수신 모듈 구현)

  • Kim, Dong-Ho;Kim, Dong-Su;Ryu, Jong-In;Kim, Jun-Chul;Park, Chong-Dae;Park, Jong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.2
    • /
    • pp.154-161
    • /
    • 2011
  • This paper presents a compact integrated transceiver module for 2.4 GHz band applications using Low Temperature Co-fired Ceramic(LTCC) technology. The implemented transceiver module is divided into an RF Front-End Module (FEM) part and a transceiver IC chip part. The RF FEM part except an SPDT switch and DC block capacitors is fully embedded in the LTCC substrate. The fabricated RF FEM has 8 pattern layers and it occupies less than $3.3\;mm{\times}5.2\;mm{\times}0.4\;mm$. The measured results of the implemented RF FEM are in good agreement with the simulated results. The transceiver IC chip part consists of signal line, power line and transceiver IC for 2.4 GHz band communication system. The fabricated transceiver module has 9 layers including three inner grounds and it occupies less than $12\;mm{\times}8.0\;mm{\times}1.1\;mm$. The implemented transceiver module provides an output power of 18.1 dBm and a sensitivity of -85 dBm.

Design of Clock Recovery circuit for 13.56MHz RFID Tags with 100% ASK Receiver (100% ASK 수신기를 위한 13.56MHz RFID Tag용 클럭 복원회로 설계)

  • Kim, Ji-Gon;Yi, Kyeong-Il;Kim, Hyun-Sik;Kim, J.H.;Kim, Hyo-Jong;Kim, Shi-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.11
    • /
    • pp.44-49
    • /
    • 2008
  • We have proposed a clock recovery circuit for 13.56MHz RFID Tags using 100%, ASK RF input signal. The proposed clock recovery circuit generates clock pulses without reference clock by adapting register controlled DLL. The proposed circuit have designed by using a TSMC 0.18um 1P6M CMOS technology. The simulated results show that the phase locking time of the proposed circuit is about 6.4 usec and power consumption is about 43uW at supply voltage of 3.3V.

A Study on the FIR Digital Filter using Modified Window Function (변형된 창함수를 사용한 FIR 디지털 필터에 관한 연구)

  • 강경덕;배상범;김남호;류지구
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.1
    • /
    • pp.49-55
    • /
    • 2003
  • The use of digital filters in the signal process field is increasing rapidly with development of the modern industrial society. Especially, detail processors, Y/C separators, ghost removing filters, standard converters (NTSC to PAL or PAL to NTSC) and noise reducers, all of which use digital filters, tend to be used in digital video and audio processing, CATV and various communication fields. Generally, there are two different digital filters, the Rf (infinite impulse response) filter and the FIR (finite impulse response) filter in digital filter. In this paper, we have designed FIR filter which has the phase linearity and the easiness of creation. In the design of the FIR digital filter, the window function is used to alleviate the ripples caused by Gibbs Phenomenon around the cut off frequency of the band pass. But there're some problems to choose proper window function for the design destination due to its fixed values. Therefore, in this paper, we designed a modified Hanning window with new parameter which is adaptively chosen corresponding to design objectives. The digital filter was simulated to prove the validity of the model and it was compared with the Hamming, the Manning, the Blacknan and the Kaiser window function. And we have used peak side-lobe and transient characteristics as standard of judgement.

  • PDF

A Magnetic Resonant Coil for Enhancement of Wireless Power Transfer Efficiency of NFC devices (근접 통신 단말의 무선 전력 전송 효율 향상을 위한 자기 공진코일 시스템)

  • Gim, Yeong-Gyo;Kim, Shi-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.10
    • /
    • pp.1-5
    • /
    • 2011
  • A magnetic resonant coil system for enhancement of wireless power transfer efficiency of NFC devices was proposed. The NFC system consists of resonant coils arrange between source coil and device coil. The effects of resonant coil was measured using a 13.56MHz RFID reader and tag system and simulated by 3D RF simulator. The measurement results from RFID reader and tag show that the maximum distance of signal transmission is increased by 96.72% and received voltage of RFID tag is grew by 17.95% thanks to the magnetic resonant coils.

Position Fixing Accuracy of TDOA Direction Finding Method (TDOA 방위탐지방식의 위치표정 정확도)

  • Lim, Joong-Soo;Chae, Gyoo-Soo
    • Journal of Digital Convergence
    • /
    • v.12 no.11
    • /
    • pp.373-378
    • /
    • 2014
  • The technology of direction finding is very important to make high position fixing accuracy. TDOA(time difference of arrival) direction finding technology is a high accuracy technology and is used in RF system from 1990. The principle of TDOA is to receive an emitter signal with two antennas, measure the time difference of received signal and then convert the time differences to azimuth angle. For high DF(direction finding) accuracy long basis line and high SNR at receiving system are needed. The DF accuracy and position fixing accuracy are simulated with different SNRs and antenna base lines. We obtain the DF accuracy of $0.51^{\circ}$ at $0^{\circ}$ incident azimuth angle in case of 50m base line and 40dB SNR.

Thermal Memory Effect Modeling and Compensation in Doherty Amplifier (Doherty 증폭기의 열 메모리 효과 모델링과 보상)

  • Lee Suk-Hui;Lee Sang-Ho;Bang Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.9 s.339
    • /
    • pp.49-56
    • /
    • 2005
  • Memory effect, which influence the performance of Doherty amplifier, become more significant and critical in designing these circuits as the modulation signal bandwidth and operation power level increase. This paper reports on an attempt to investigate, model and quantity the contribution of the electrical nonlinearity effects and the thermal memory effects to a Doherty amplifier's distortion generation. Also this raper reports on the development of an accurate dynamic expression of the instantaneous junction temperature as a function of the instantaneous dissipated power. This expression has been used in the construction of an electrothermal model for the Doherty amplifier. Parameters for the nelv proposed behavior model were determined from the Doherty amplifier measurements obtained under different excitation conditions. This study led us to conclude that the effects of the transistor self-heating phenomenon are important for signals with wideband modulation bandwidth(ex. W-CDMA or UMTS signal). Doherty amplifier with electrothermal memory effect compensator enhanced ACLR performance about 20 dB than without electrothemal memory effect compensator. Experiment results were mesured by 60W LDMOS Doherty amplifier and electrothermal memory effect compensator was simulated by ADS.

Development of a Preliminary Formation-Flying Testbed for Satellite Relative Navigation and Control

  • Park, Jae-Ik;Park, Han-Earl;Shim, Sun-Hwa;Park, Sang-Young;Choi, Kyu-Hong
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.26.3-26.3
    • /
    • 2008
  • This research develops a GPS-based formation-flying testbed (FFTB) for formation navigation and control. The FFTB is a simulator in which spacecraft simulation and modeling software and loop test capabilities are integrated for test and evaluation of spacecraft navigation and formation control technologies. The FFTB is composed of a GPS measurement simulation computer, flight computer, environmental computer for providing true environment data and 3D visualization computer. The testbed can be simulated with one to two spacecraft, thus enabling a variety of navigation and control algorithms to be evaluated. In a formation flying simulation, GPS measurement are generated by a GPS measurement simulator to produce pseudorange, carrier phase measurements, which are collected and exchanged by the flight processors and subsequently processed in a navigation filter to generate relative and/or absolute state estimates. These state estimates are the fed into control algorithm, which are used to generate maneuvers required to maintain the formation. In this manner, the flight processor also serves as a test platform for candidate formation control algorithm. Such maneuvers are fed back through the controller and applied to the modeled truth trajectories to close simulation loop. Currently, The FFTB has a closed-loop capability of simulating a satellite navigation solution using software based GPS measurement, we move forward to improve using SPIRENT GPS RF signal simulator and space-based GPS receiver

  • PDF

Development of a Comprehensive Performance Test Facility for Small Millimeter-wave Tracking Radar (소형 추적 레이다용 종합성능시험 시설 개발)

  • Kim, Hong-Rak;Kim, Youn-Jin;Woo, Seon-Keol;An, Se-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.121-127
    • /
    • 2020
  • The small tracking radar targets the target in a real-time, fast-moving, fast-moving target against aircraft with a large RCS that is maneuvering at low speed and a small RCS aircraft maneuvering at high speed (fighters, drones, helicopters, etc.) It is a pulsed radar that detects and tracks. Performing a performance test on a tracking radar in a real environment is expensive, and it is difficult to quantitatively measure performance in a real environment. Describes the composition of the laboratory environment's comprehensive performance test facility and the main requirements and implementation of each configuration.Anechoic chambers to simulate the room environment, simulation target generator to simulate the signal of the room target, target It is composed of a horn antenna driving device to simulate the movement of a vehicle and a Flight Motion Simulatior (FMS) to simulate the flight environment of a tracking radar, and each design and implementation has been described.

Design of Temperature Compensation Circuit for W-band Radar Receiver (W-band 레이더 수신기용 온도보상회로 설계)

  • Lee, Dongju;Kim, Wansik;Kwon, Jun-Beom;Seo, Mihui;Kim, Sosu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.129-133
    • /
    • 2020
  • In this paper, a temperature compensation circuit is presented in order to mitigate gain variability due to temperature in the W-band low-noise amplifier (LNA). The proposed cascode temperature compensation bias circuit automatically controls gate bias voltages of the common-source LNA in order to suppress variations of small-signal gain. The designed circuit was realized in a 100-nm GaAs pHEMT process. The simulated voltage gain of W-band LNA including the proposed bias circuit is >20 dB with gain variability less than ±0.8 dB in the range of temperatures between -35 to 71℃. We expect that the proposed circuit contributes to millimeter-wave receivers for stable performances in radar applications.