• Title/Summary/Keyword: Simplify the work

Search Result 90, Processing Time 0.026 seconds

Neural and MTS Algorithms for Feature Selection

  • Su, Chao-Ton;Li, Te-Sheng
    • International Journal of Quality Innovation
    • /
    • v.3 no.2
    • /
    • pp.113-131
    • /
    • 2002
  • The relationships among multi-dimensional data (such as medical examination data) with ambiguity and variation are difficult to explore. The traditional approach to building a data classification system requires the formulation of rules by which the input data can be analyzed. The formulation of such rules is very difficult with large sets of input data. This paper first describes two classification approaches using back-propagation (BP) neural network and Mahalanobis distance (MD) classifier, and then proposes two classification approaches for multi-dimensional feature selection. The first one proposed is a feature selection procedure from the trained back-propagation (BP) neural network. The basic idea of this procedure is to compare the multiplication weights between input and hidden layer and hidden and output layer. In order to simplify the structure, only the multiplication weights of large absolute values are used. The second approach is Mahalanobis-Taguchi system (MTS) originally suggested by Dr. Taguchi. The MTS performs Taguchi's fractional factorial design based on the Mahalanobis distance as a performance metric. We combine the automatic thresholding with MD: it can deal with a reduced model, which is the focus of this paper In this work, two case studies will be used as examples to compare and discuss the complete and reduced models employing BP neural network and MD classifier. The implementation results show that proposed approaches are effective and powerful for the classification.

Model Predictive Control for Tram Charging and Its Semi-Physical Experimental Platform Design

  • Guo, Chujia;Zhang, Aimin;Zhang, Hang
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1771-1779
    • /
    • 2018
  • Modern trams with a super capacitor have gained a lot of attention in recent years due to its reliability, convenience, energy conservation and environmental friendliness. Because of its special charging characteristic, the traditional charging structure and control strategy cannot satisfy its charging requirements. This paper presents a new charging topology for fast charging modern trams with a super capacitor and it designs a controller using continuous control set model predictive control (CCS-MPC). There are three contributions in this paper. First, a new charging structure is designed and its mathematics model is derived. The cascade structure is adopted instead of the parallel structure to simplify the control process and to keep the rated power of the controllable part low. Second, a MPC control strategy is proposed to satisfy the charging characteristic. The optimal control signal can be obtained by solving the designed optimization problem. The optimal control signal is related to the discrete control action. In addition, mapping between the continuous control signal and the discrete control action is designed. Third, a semi-physical experimental platform is built to verify the proposed topology and control method. The simulation model and experiment platform are built to verify the correctness of the new structure and its control method. The results obtained show that the new topology can work effectively.

An Elastic-Plastic Stress Analysis in Silicon Carbide Fiber Reinforced Magnesium Metal Matrix Composite Beam Having Rectangular Cross Section Under Transverse Loading

  • Okumus, Fuat
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.221-229
    • /
    • 2004
  • In this work, an elastic-plastic stress analysis has been conducted for silicon carbide fiber reinforced magnesium metal matrix composite beam. The composite beam has a rectangular cross section. The beam is cantilevered and is loaded by a single force at its free end. In solution, the composite beam is assumed perfectly plastic to simplify the investigation. An analytical solution is presented for the elastic-plastic regions. In order to verify the analytic solution results were compared with the finite element method. An rectangular element with nine nodes has been choosen. Composite plate is meshed into 48 elements and 228 nodes with simply supported and in-plane loading condations. Predictions of the stress distributions of the beam using finite elements were overall in good agreement with analytic values. Stress distributions of the composite beam are calculated with respect to its fiber orientation. Orientation angles of the fiber are chosen as $0^{circ},\;30^{circ},\;45^{circ},\;60^{circ}\;and\;90^{circ}$. The plastic zone expands more at the upper side of the composite beam than at the lower side for $30^{circ},\;45^{circ}\;and\;60^{circ}$ orientation angles. Residual stress components of ${\sigma}_{x}\;and \;{\tau}_{xy}$ are also found in the section of the composite beam.

Numerical Simulation of Flame Propagation in a Micro Combustor (초소형 연소기내 화염전파의 수치모사)

  • Choi, Kwon-Hyoung;Lee, Dae-Hoon;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.685-692
    • /
    • 2003
  • A numerical simulation of flame propagation in a micro combustor was carried out. Combustor has a sub -millimeter depth cylindrical internal volume and axisymmetric one-dimensional was used to simplify the geometry. Semi-empirical heat transfer model was used to account for the heat loss to the walls during the flame propagation. A detailed chemical kinetics model of $H_2/Air$ with 10 species and 16 reaction steps was used to calculate the combustion. An operator-splitting PISO scheme that is non-iterative, time-dependent, and implicit was used to solve the system of transport equations. The computation was validated for adiabatic flame propagation and showed good agreement with existing results of adiabatic flame propagation. A full simulation including the heat loss model was carried out and results were compared with measurements made at corresponding test conditions. The heat loss that adds its significance at smaller value of combust or height obviously affected the flame propagation speed as final temperature of the burnt gas inside the combustor. Also, the distribution of gas properties such as temperature and species concentration showed wide variation inside the combustor, which affected the evaluation of total work available of the gases.

Partially Asynchronous Task Planning for Dual Arm Manipulators (양팔 로봇을 위한 부분적 비동기 작업 계획)

  • Chung, Seong Youb;Hwang, Myun Joong
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.100-106
    • /
    • 2020
  • In the agricultural field, interests in research using robots for fruit harvesting are continuously increasing. Dual arm manipulators are promising because of its abilities like task-distribution and role-sharing. To operate it efficiently, the task sequence must be planned adequately. In our previous study, a collision-free path planning method based on a genetic algorithm is proposed for dual arm manipulators doing tasks cooperatively. However, in order to simplify the complicated collision-check problem, the movement between tasks of two robots should be synchronized, and thus there is a problem that the robots must wait and resume their movement. In this paper, we propose a heuristic algorithm that can reduce the total time of the optimal solution obtained by using the previously proposed genetic algorithm. It iteratively desynchronizes the task sequence of two robots and reduces the waiting time. For evaluation, the proposed algorithm is applied to the same work as the previous study. As a result, we can obtain a faster solution having 22.57 s than that of the previous study having 24.081 s. It will be further studied to apply the proposed algorithm to the fruit harvesting.

Properties of Lightweight Foamed Concrete According to Animality Protein Foaming Agent Type (동물성 기포제 종류별 경량기포 콘크리트의 특성)

  • Lim, Jeong-Jun;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.34-35
    • /
    • 2019
  • In recent years, the construction industry has also applied the dry method that can be assembled in the field by industrialization and factory production, which is free from climatic effects and can reduce the cost due to mass production and simplify the work in the field. Among the building materials used in this dry method, ALC products are made by mixing calcium oxide, gypsum, cement, and water in silica and putting them in an autoclave to create voids in the interior through steam curing at high temperature and pressure. But it requires curing cycle conditions of warming, isothermal, and temperature curing. It depends on the performance of the product depending on the curing conditions, the economical efficiency due to high oil prices, the emission of greenhouse gases by the use of fossil fuels. Experiments were conducted to select an appropriate animal protein foam for lightweight foamed concrete block which was cured by applying a prefilling method to replace existing ALC products. As a result of investigating the characteristics of lightweight foamed concrete by type of animal protein foam, it is considered that FP3 is most suitable for manufacturing lightweight foamed concrete block.

  • PDF

Multiple damages detection in beam based approximate waveform capacity dimension

  • Yang, Zhibo;Chen, Xuefeng;Tian, Shaohua;He, Zhengjia
    • Structural Engineering and Mechanics
    • /
    • v.41 no.5
    • /
    • pp.663-673
    • /
    • 2012
  • A number of mode shape-based structure damage identification methods have been verified by numerical simulations or experiments for on-line structure health monitoring (SHM). However, many of them need a baseline mode shape generated by the healthy structure serving as a reference to identify damages. Otherwise these methods can hardly perform well when multiple cracks conditions occur. So it is important to solve the problems above. By aid of the fractal dimension method (FD), Qiao and Wang proposed a generalized fractal dimension (GFD) to detect the delamination damage. As a modification of GFD, Qiao and Cao proposed the approximate waveform capacity dimension (AWCD) technique to simplify the calculation of fractal and overcome the false peak appearing in the high mode shapes. Based on their valued work, this paper combined and applied the AWCD method and curvature mode shape data to detect multiple damages in beam. In the end, the identification properties of the AWCD for multiple damages have been verified by groups of Monte Carlo simulations and experiments.

ROS-based control for a robot manipulator with a demonstration of the ball-on-plate task

  • Khan, Khasim A.;Konda, Revanth R.;Ryu, Ji-Chul
    • Advances in robotics research
    • /
    • v.2 no.2
    • /
    • pp.113-127
    • /
    • 2018
  • Robotics and automation are rapidly growing in the industries replacing human labor. The idea of robots replacing humans is positively influencing the business thereby increasing its scope of research. This paper discusses the development of an experimental platform controlled by a robotic arm through Robot Operating System (ROS). ROS is an open source platform over an existing operating system providing various types of robots with advanced capabilities from an operating system to low-level control. We aim in this work to control a 7-DOF manipulator arm (Robai Cyton Gamma 300) equipped with an external vision camera system through ROS and demonstrate the task of balancing a ball on a plate-type end effector. In order to perform feedback control of the balancing task, the ball is designed to be tracked using a camera (Sony PlayStation Eye) through a tracking algorithm written in C++ using OpenCV libraries. The joint actuators of the robot are servo motors (Dynamixel) and these motors are directly controlled through a low-level control algorithm. To simplify the control, the system is modeled such that the plate has two-axis linearized motion. The developed system along with the proposed approaches could be used for more complicated tasks requiring more number of joint control as well as for a testbed for students to learn ROS with control theories in robotics.

Analysis of Transport Parameters in an Interacting Two-Band Model with Application to $p^{+}$-GaAs

  • Kim, B.W.;Majerfeld, A.
    • ETRI Journal
    • /
    • v.17 no.3
    • /
    • pp.17-43
    • /
    • 1995
  • We present a comprehensive derivation of the transport of holes involving an interacting two-valence-band system in terms of a generalized relaxation time approach. We sole a pair of semiclassical Boltzmann equations in a general way first, and then employ the conventional relaxation time concept to simplify the results. For polar optical phonon scattering, we develop a simple method th compensate for the inherent deficiencies in the relaxation time concept and apply it to calculate effective relaxation times separately for each band. Also, formulas for scattering rates and momentum relaxation times for the two-band model are presented for all the major scattering mechanisms for p-type GaAs for simple, practical mobility calculations. Finally, in the newly proposed theoretical frame-work, first-principles calculations for the Hall mobility and Hall factor of p-type GaAs at room temperature are carried out with no adjustable parameters in order to obtain a direct comparison between the theory and recent available experimental results, which would stimulate further analysis toward better understanding of the complex transport properties of the valence band. The calculated Hall mobilities show a general agreement with our experimental data for carbon doped p-GaAs samples in a range of degenerate hole densities. The calculated Hall factors show $r_H$=1.25~1.75 over all hole densities($2{\times}10^{17}{\sim}1{\times}10^{20}cm^{-3}$ considered in the calculations.

  • PDF

Authentication System of Students using the Position Information of Android-based (안드로이드 기반의 위치정보를 이용한 수강생 인증 시스템)

  • Park, Sung-Hyun;Pyoun, Do-kil;Yuk, Jung-Soo;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.632-634
    • /
    • 2013
  • Subjects that require the creation of lecture and tour diary system and on-the-spot investigation in class of educational institutions universities and smart the current era has increased. At this point, it is intended to ensure the convenience of the process of teaching the specified one by one, to create a history of the data. In this paper, we devised a work by introducing a system for authentication of the material and of such as tours and systems on-the-spot investigation in the various modules and position information of Android, to simplify a more convenient reporting and learning environment.

  • PDF