• 제목/요약/키워드: Simplified fatigue analysis

검색결과 54건 처리시간 0.024초

Simplified elastic-plastic analysis procedure for strain-based fatigue assessment of nuclear safety class 1 components under severe seismic loads

  • Kim, Jong-Sung;Kim, Jun-Young
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2918-2927
    • /
    • 2020
  • This paper proposes a simplified elastic-plastic analysis procedure using the penalty factors presented in the Code Case N-779 for strain-based fatigue assessment of nuclear safety class 1 components under severe seismic loads such as safety shutdown earthquake and beyond design-basis earthquake. First, a simplified elastic-plastic analysis procedure for strain-based fatigue assessment of nuclear safety class 1 components under the severe seismic loads was proposed based on the analysis result for the simplified elastic-plastic analysis procedure in the Code Case N-779 and the stress categories corresponding to normal operation and seismic loads. Second, total strain amplitude was calculated directly by performing finite element cyclic elastic-plastic seismic analysis for a hot leg nozzle in pressurizer surge line subject to combined loading including deadweight, pressure, seismic inertia load, and seismic anchor motion, as well as was derived indirectly by applying the proposed analysis procedure to the finite element elastic stress analysis result for each load. Third, strain-based fatigue assessment was implemented by applying the strain-based fatigue acceptance criteria in the ASME B&PV Code, Sec. III, Subsec. NB, Article NB-3200 and by using the total strain amplitude values calculated. Last, the total strain amplitude and the fatigue assessment result corresponding to the simplified elastic-plastic analysis were compared with those using the finite element elastic-plastic seismic analysis results. As a result of the comparison, it was identified that the proposed analysis procedure can derive reasonable and conservative results.

반 잠수식 시추선의 스펙트랄 피로해석에 관한 연구 (A Study on the Spectral Fatigue Analysis of Semi-submersible Rig Structures)

  • Cho, Kyu-Nam
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.103-112
    • /
    • 1994
  • Various kinds of fatigue failures of ocean structures were reported and the importance of fatigue life estimation at the design state is significantly recognized and various kinds of analysis approaches have been discussed. In this paper characteristics of the simplified method proposed here and the spectral method are studied and the elements of the approach are discussed. The merits and demerits of the forementioned analysis schemes are studied and the relating parameters such as SCF and S-N curves are also investigated. The simplified fatigue analysis approach and tile spectral fatigue analysis technique is applied for the analysis of bracing members of typical semi-submersible drilling rig structure for the verification of the usage of two methods and the sensitivity study has been performed using the simplified method. The result from the spectral analysis give a more realistic picture of the fatigue life of the offshore structure considered here.

  • PDF

용접구조물의 피로수명예측을 위한 수치해석모델 (Numerical Analysis Model for Fatigue Life Prediction of Welded Structures)

  • 이치승;이제명
    • Journal of Welding and Joining
    • /
    • 제27권6호
    • /
    • pp.49-54
    • /
    • 2009
  • In this study, the numerical analysis model for fatigue life prediction of welded structures are presented. In order to evaluate the structural degradation of welded structures due to fatigue loading, continuum damage mechanics approach is applied. Damage evolution equation of welded structures under arbitrary fatigue loading is constructed as a unified plasticity-damage theory. Moreover, by integration of damage evolution equation regarding to stress amplitude and number of cycles, the simplified fatigue life prediction model is derived. The proposed model is compared with fatigue test results of T-joint welded structures to obtain its validation and usefulness. It is confirmed that the predicted fatigue life of T-joint welded structures are coincided well with the fatigue test results.

유빙 하중을 받는 내빙 선박의 피로손상도 추정 Part II - 간이 해석법 (Estimation of the Fatigue Damage for an Ice-going Vessel under Broken Ice Condition Part II - Simplified Approach)

  • 김정환;김유일
    • 대한조선학회논문집
    • /
    • 제56권3호
    • /
    • pp.231-241
    • /
    • 2019
  • In this study, a simplified analysis method was developed to evaluate the fatigue damage of an ice-going ship under broken ice condition. The global ice load, which is essentially calculated at the design stage of the Arctic vessel, and the hull form information were used to estimate the local ice load acting on the outer-shell of the ship. The local ice load was applied to the finite element analysis model, and the Weibull parameters for the target fatigue point were derived. Finally, fatigue damage was evaluated by applying the S-N curve and the Palmgren-Miner rule. For the verification of the proposed method, numerical analyses using direct approach were performed for the same conditions. A numerical model that implements the interaction between ice and structure was introduced to verify the local ice load and the stress calculated from the proposed method. Finally, the fatigue analyses of the Baltic Sea for actual ice conditions were performed, and the results of the proposed method, the method using numerical analysis, and the LR method were compared.

고정식 해양구조물의 피로수명예측에 대한 신뢰성해석 (Reliability of Fatigue Life Predictions for Fixed Offshore Structures)

  • 이재옥;이현엽;서용석;윤장호
    • 대한조선학회논문집
    • /
    • 제35권2호
    • /
    • pp.74-82
    • /
    • 1998
  • 해양구조물의 피로에 대해 확률론적으로 안전성을 평가하는 기법을 개발하기 위하여, 피로해석 과정에서 유입되는 불확실한 요소들을 검토하여 이들의 확률분포를 현재까지의 자료를 이용하여 최선으로 추정하였으며, 피로해석기법으로는 Simplified Method를 이용하여 피로신뢰성해석 모델을 개발하였다. 또한 실제의 자켓형 해양구조물을 대상으로 피로신뢰성 해석을 수행하였으며, 각 불확실성 요소가 피로수명에 미치는 영향을 파악하여 각 요소들의 상대적 중요성을 검토하였다.

  • PDF

유조선 종통보강재와 횡늑골 연결부의 피로강도 평가용 자동화 시스템 개발 (Development of Evaluation System for Fatigue Strength on the Connection Between Longitudinals and Transverse Web)

  • 홍기섭;김성찬;안재욱;김성기
    • 대한조선학회논문집
    • /
    • 제46권5호
    • /
    • pp.510-519
    • /
    • 2009
  • Ship structure is composed of the welded mixture members which are plate and stiffeners. Ship structure is also influenced by variable loadings such as wave and inertia load. There have been several fatigue damage problems on the connection between longitudinal and transverse web due to wide usage of high tensile steel and adoption of wide web space to improve shipbuilding productivity. It is impossible to estimate the fatigue lives for all connection details through refined fatigue analysis. It is necessary to use the simplified approach for the fatigue life estimation of the connection details. PLUS analysis, which is suggested by the classification society, is one of the simplified approaches and is widely adopted to get fatigue lives for the connection details along whole cargo hold area. However, ship building yards still have difficulties to get fatigue lives due to large amount of calculation and time even if this approach reduce the time and amount of calculation. This paper treats the computing system developed to reduce efforts of estimating the fatigue lives. The influence factors of mean shear stress and local dynamic pressure are easily calculated and fatigue lives for all hot spots can be estimated automatically by the developed computing system. It is possible to reduce computing time and efforts to get the fatigue lives for the connection details between longitudinals and transverse webs along the ship. This system was applied to get fatigue lives on the connection details of a VLCC and verified the availability.

대형 컨테이너선 상갑판 해치코너부 보강판의 설계에 관한 연구 (Study on the Design of Upper Deck Hatch Corner Insert Plates of Large Container Carriers)

  • 박성구;이주성
    • 대한조선학회논문집
    • /
    • 제43권3호
    • /
    • pp.331-339
    • /
    • 2006
  • The objective of this paper is to calculate the fatigue strength for upper deck hatch corner insert plate of large container carriers without wave load analysis and global finite element analysis at the initial design stage. Wave load analysis and global F.E. analysis for three container carriers have been performed by GL(Germanischer Lloyd) procedure to propose the equation for hatch corner stress range which is the important factor in fatigue strength calculation. Considering the restraining effect of bulkhead, three types of equation, that is, single tight bulkhead, double tight bulkhead and support bulkhead have been proposed. Using the proposed equations, a simplified fatigue analysis based on GL rules has been performed for two container carriers of which fatigue strength analysis was carried out by GL. From the comparison between fatigue strength result of using the proposed equations and that of GL, it has been found that proposed stress range equations are useful for scantling of upper deck hatch corner insert plates for over 8,000 TEU class container carriers.

해양구조물의 피로해석기법에 대한 검토 및 전산프로그램의 개발 (A Review on Fatigue Analysis of Offshore Structures and Development of a Computer Program)

  • 이현엽
    • 한국해양공학회지
    • /
    • 제10권2호
    • /
    • pp.13-19
    • /
    • 1996
  • For fatigue analsis of offshore structures, existing methods have been reviewed and a computer code has been developed on PC. As methods to estimate the probabillity distribution of the fatigue stress, three methods(the deterministic method, the stochastic method, and the simplified method) are used in this code, to choose the appropriate method according to the situations. This code estimates damage ratios, fatigue lives, and probabilities of fatigue failure considering scatterness of SN-data, based on linear damage rule and SN-curves. Also, allowable stress for the design extreme wave can calculated by the simplified method.

  • PDF

Fatigue performance evaluation of reinforced concrete element: Efficient numerical and SWOT analysis

  • Saiful Islam, A.B.M.
    • Computers and Concrete
    • /
    • 제30권4호
    • /
    • pp.277-287
    • /
    • 2022
  • Due to the scarcity of extortionate experimental data, fatigue failure of the reinforced concrete (RC) element might be achieved economically adopting nonlinear finite element (FE) analysis as an alternative approach. However, conventional implicit dynamic analysis is expensive, quasi-static method overlooks interaction effects and inertia, direct cyclic analysis computes stabilized responses. Apart from this, explicit dynamic analysis may provide a numerical operating system for factual long-term responses. The study explores the fatigue behavior based on a simplified explicit dynamic solution employing nonlinear time domain analysis. Among fourteen RC beams, one beam is selected to validate under static loading, one under fatigue with the experimental study and other twelve to check the detail fatigue behavior. The SWOT (Strength, Weakness, Opportunities, Threats) analysis has been carried out to pinpoint the detail scenario in the adoption of numerical approach as an alternative to the experimental study. Excellent agreement of FE and experimental results is seen. The 3D nonlinear RC beam model at service fatigue limits is truthful to be used as an expedient contrivance to envisage the precise fatigue behavior. The simplified analysis approach for RC beam under fatigue offers savings in computation to predict responses providing acceptable accuracy rather than the complicated laboratory investigation. At higher frequency, the flexural failure occurs a bit earlier gradually compared to the repeated loading case of lower frequency. The deflection increases by 6%-10% at the end of first cycle for beams with increasing frequency of cyclic loading. However, at the end of fatigue loading, greater deflection occur earlier for higher load range because of more rapid stiffness degradation. For higher frequency, a slight boost in concrete compressive strains at an initial stage of loading has been seen indicating somewhat stepper increment. Stiffness degradation in larger loading cycle at same duration escalates the upsurge of the rate of strain in case of higher frequency.

Simplified approach for the evaluation of critical stresses in concrete pavement

  • Vishwakarma, Rameshwar J.;Ingle, Ramakant K.
    • Structural Engineering and Mechanics
    • /
    • 제61권3호
    • /
    • pp.389-396
    • /
    • 2017
  • Concrete pavements are subjected to traffic and environmental loadings. Repetitive type of such loading cause fatigue distress which leads to failure by forming cracks in pavement. Fatigue life of concrete pavement is calculated from the stress ratio (i.e. the ratio of applied flexural stress to the flexural strength of concrete). For the correct estimation of fatigue life, it is necessary to determine the maximum flexural tensile stress developed for practical loading conditions. Portland cement association PCA (1984) and Indian road congress IRC 58 (2015) has given charts and tables to determine maximum edge stresses for particular loading and subgrade conditions. It is difficult to determine maximum stresses for intermediate loading and subgrade conditions. The main purpose of this study is to simplify the analysis of rigid pavement without compromising the accuracy. Equations proposed for determination of maximum flexural tensile stress of pavement are verified by finite element analysis.