• Title/Summary/Keyword: Simple Beam

Search Result 1,068, Processing Time 0.033 seconds

An Analytic Method for the Residual Strength Evaluation of Fire-Damaged Reinforced Concrete Beam

  • Park, Won-jun;Park, Ki-bong;Lee, Han-seung
    • Architectural research
    • /
    • v.10 no.2
    • /
    • pp.37-42
    • /
    • 2008
  • This study is to get the proper evaluation of the residual property of reinforced concrete beam exposed to fire. This study focused on the strength resistance and analytical evaluation of RC members exposed high temperature. And this study is the basis analytical research to conduct the other studies. To analysis by the finite element method, the Total-RC program was used to analysis it and the Total-Temp program was also used to analysis the temperature distributions at the section. All of results were compared with the pre-existing experimental data of simple supported beam. Using it, the parameters influencing the structural capacity of the high temperature-damaged RC members and residual strength estimation are investigated. The temperature distribution and the structural capacity at the section are calculated in this step. An application of this method is compared with the heating test result and residual property test for simple supported beam which is subjected to ISO 834 test fire. The results of this study are as follows; 1) The loads-displacement relationship of RC beam, considering initial thermal stress of cross section and heat transfer analysis are estimated comparing analytical value with pre-existing experimental results. 2) by the heating time (0, 1, 2 hours), the results of analysis with parameters show that the load capacity exposing at fire is affected.

An Experimental Study on the Structural Performance of Openings at End Steel Beams (강재 단순보 단부에 근접한 개구부의 구조성능에 관한 실험적 연구)

  • Han, Dong-Ho;Yoon, Sung-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.138-145
    • /
    • 2020
  • This study was conducted to identify the structural performance of the opening in a location close to the support point in the perforated beam system of steel beams. In addition, structural performance was determined through experiments on reinforced openings using vertical and horizontal steel plates. In the steel simple beam, it was found that the opening was in a position closer to the support point, half the height of the steel beam (D/2), which was more appropriate than the height of the steel beam (D). In addition, the reinforcement effect of horizontal steel plate was greater than that of vertical steel plate reinforcement. Structural performance was improved when there was no gap between openings and steel plates.

Free Vibrations and Buckling Loads of Simple Beam-Columns with Constant Volumes (일정체적을 갖는 단순지지 보-기둥의 자유진동 및 좌굴하중)

  • Lee, Byoung-Koo;Oh, Sang-Jin;Mo, Jeong-Man;Lee, Yong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.62-69
    • /
    • 1995
  • The differential equations governing both the free vibrations and buckling loads of the beam-columns with constant volumes are derived and solved numerically. The axial load effects are included in the differential equations. The Runge-Kutta method and Regula-Falsi method are used to compute the eigenvalues corresponding to the natural frequencies. and buckling loads. In numerical examples, the simple end constraint is considered.

  • PDF

Stress Concentration Factor and Stress Intensity Factor with U-notch and Crack in the Beam (U-노치 및 균열을 갖는 보의 응력집중계수 및 응력확대계수)

  • Seo, Bo Seong;Lee, Kwang Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.5
    • /
    • pp.513-523
    • /
    • 2016
  • The stress concentration factors and stress intensity factors for a simple beam and a cantilever are analyzed by using finite element method and phtoelasticity. Using the analyzed results, the estimated graphs on stress concentration factors and stress intensity factors are obtained. To analyze stress concentration factors of notch, the dimensionless notch length H(height of specimen)/h=1.1~2 and dimensionless gap space r(radius at the notch tip)/h=0.1~0.5 are used. where h=H-c and c is the notch length. As the notch gap length increases and the gap decreases, the stress concentration factors increase. Stress concentration factors of a simple beam are greater than those of a cantilever beam. However, actually, the maximum stress values under a load, a notch length and a gap occur more greatly in the cantilever beam than in the simple beam. To analyze stress intensity factors, the normalized crack length a(crack length)/H=0.2~0.5 is used. As the length of the crack increases, the normalized stress intensity factors increase. The stress intensity factors under a constant load and a crack length occur more greatly in the cantilever beam than in the simple beam.

Beam cone analysis and its applications for the beams obliquely input to dielectric boundaries (유전체 경계면에 경사지게 입사하는 beam cone의 해석과 그 응용)

  • 이병호;민성욱
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.5
    • /
    • pp.142-148
    • /
    • 1996
  • It is shown that a simple vector analysis method can provide beam cone shapes for laser bemas non-paraxially input to dielectric boundaries with inclination. Acceptance coen shapes for angled-endface fibers are calculated by the method. Beam cone shapes inside InP substrates are also calculated by the method for the coupling of an optical fiber and an InP-based photodiode using a Si v-groove. The effectiveness and errors of the recently suggested matrix method for inclined boundaries are also studied.

  • PDF

A new approach for finite element analysis of delaminated composite beam, allowing for fast and simple change of geometric characteristics of the delaminated area

  • Perel, Victor Y.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.5
    • /
    • pp.501-518
    • /
    • 2007
  • In this work, a new approach is developed for dynamic analysis of a composite beam with an interply crack, based on finite element solution of partial differential equations with the use of the COMSOL Multiphysics package, allowing for fast and simple change of geometric characteristics of the delaminated area. The use of COMSOL Multiphysics package facilitates automatic mesh generation, which is needed if the problem has to be solved many times with different crack lengths. In the model, a physically impossible interpenetration of the crack faces is prevented by imposing a special constraint, leading to taking account of a force of contact interaction of the crack faces and to nonlinearity of the formulated boundary value problem. The model is based on the first order shear deformation theory, i.e., the longitudinal displacement is assumed to vary linearly through the beam's thickness. The shear deformation and rotary inertia terms are included into the formulation, to achieve better accuracy. Nonlinear partial differential equations of motion with boundary conditions are developed and written in the format acceptable by the COMSOL Multiphysics package. An example problem of a clamped-free beam with a piezoelectric actuator is considered, and its finite element solution is obtained. A noticeable difference of forced vibrations of the delaminated and undelaminated beams due to the contact interaction of the crack's faces is predicted by the developed model.

An initial investigation of the inverted trussed beam formed by wooden rectangular cross section enlaced with wire rope

  • Gesualdo, F.A.R.;Lima, M.C.V.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.2
    • /
    • pp.239-255
    • /
    • 2012
  • This work presents a contribution to understand the inverted trussed beams behavior. The system has a main beam and struts with rectangular cross section associated to a wire rope enlaced to the main beam. It is an unpublished system with the advantage of easy positioning of the wire rope, once it is a continuous and connected by turnbuckles. It is a system that can be used as support for concrete formworks or for rehabilitation wooden beams proposal. The enlacement of the cable demands a small notch at the top of the cross section and a cross pin at the bottom. Six inverted trussed beams were tested, with spans of 180 cm with cables diameter of 1/4". Additionally, four simple beams without any external steel cable were also tested with material from the same lot of wood, allowing a comparison in rupture. The results showed capacity gain of around 60% compared to a simple beam. Once the wire rope characteristics and anchoring are very important for structure response, some improvement suggestions for the efficiency of the cables are also presented.

Elastica of Simple Variable-Arc-Length Beams (단순지지 변화곡선 길이 보의 정확탄성곡선)

  • 이병구;박성근
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.177-184
    • /
    • 1997
  • In this paper, numerical methods are developed for solving the elastica of simple beams with variable-arc-length subjected to a point loading. The beam model is based on Bernoulli-Euler beam theory. The Runge-Kutta and Regula-Falsi methods, respectively, are used to solve the governing differential equations and to compute the beam's rotation at the left end of the beams. Extensive numerical results of the elastica responses, including deflected shapes, rotations of cross-section and bending moments, are presented in non-dimensional forms. The possible maximum values of the end rotation, deflection and bending moment are determined by analyzing the numerical data obtained in this study.

  • PDF

Solution method for the classical beam theory using differential quadrature

  • Rajasekaran, S.;Gimena, L.;Gonzaga, P.;Gimena, F.N.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.6
    • /
    • pp.675-696
    • /
    • 2009
  • In this paper, a unified solution method is presented for the classical beam theory. In Strength of Materials approach, the geometry, material properties and load system are known and related with the unknowns of forces, moments, slopes and deformations by applying a classical differential analysis in addition to equilibrium, constitutive, and kinematic laws. All these relations are expressed in a unified formulation for the classical beam theory. In the special case of simple beams, a system of four linear ordinary differential equations of first order represents the general mechanical behaviour of a straight beam. These equations are solved using the numerical differential quadrature method (DQM). The application of DQM has the advantages of mathematical consistency and conceptual simplicity. The numerical procedure is simple and gives clear understanding. This systematic way of obtaining influence line, bending moment, shear force diagrams and deformed shape for the beams with geometric and load discontinuities has been discussed in this paper. Buckling loads and natural frequencies of any beam prismatic or non-prismatic with any type of support conditions can be evaluated with ease.

Improvement of Proton Beam Quality from the High-intensity Short Pulse Laser Interaction with a Micro-structured Target

  • Seo, Ju-Tae;Yoo, Seung-Hoon;Pae, Ki-Hong;Hahn, Sang-June
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.22-27
    • /
    • 2009
  • Target design study to improve the quality of an accelerated proton beam from the interaction of a high-intensity short pulse laser with an overdense plasma slab has been accomplished by using a two-dimensional, fully electromagnetic and relativistic particle-in-cell (PIC) simulation. The target consists of a thin core part and a thick peripheral part of equivalent plasma densities, while the ratio of the radius of the core part to the laser spot size, and the position of the peripheral part relative to the fixed core part were varied. The positive effects of this core-peripheral target structure could be expected from the knowledge of the typical target normal sheath acceleration (TNSA) mechanism in a laser-plasma interaction, and were apparently evidenced from the comparison with the case of a conventional simple planar target and the case of the transversal size reduction of the simple planar target. Improvements of the beam qualities including the collimation, the forward directionality, and the beam divergence were verified by detailed analysis of relativistic momentum, angular directionality, and the spatial density map of the accelerated protons.