• Title/Summary/Keyword: Similarity scaling

Search Result 158, Processing Time 0.027 seconds

Structural response relationship between scaled and prototype concrete load bearing systems using similarity requirements

  • Altunisik, Ahmet C.;Kalkan, Ebru;Basaga, Hasan B.
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.385-397
    • /
    • 2018
  • This study is focused on the investigation for similitude the requirements between prototype and scaled models to determine the structural behavior of concrete load bearing systems. The scaling concept has been utilized in many engineering branches, has been assisted to engineers and scientists for obtain the behavior of the prototype by using scaled model. The scaling can be done for two purposes, either scaling up or scaling down depending upon the application. Because, scaled down models are the experimentation on scaled models is cheaper than huge structures. These models also provide facilities for experimental work. Similarity relationships between systems are created either by field equations of the system or by dimensional analysis. Within this study, similarity relationships were obtained by both methods. The similarity relations obtained are applied to different load bearing systems and it is determined that the similarity relation is a general expression. In this study, as an example, column, frame, cantilever beam and simple beam are chosen and 1/2, 1/5 and 1/10 scales are applied. The results are compared with the analytical results which are obtained by creating of the finite element models with SAP2000 software of different scaled load bearing systems. The analysis results of all systems are examined and it is determined that the scale factors are constant depending on the scale types for different load bearing systems.

Feasibility Study on Similarity Principle in Discrete Element Analysis (이산요소법을 이용한 수치해석에서의 상사성 이론의 적용성 검토)

  • Yun, Taeyoung;Park, Hee Mun
    • International Journal of Highway Engineering
    • /
    • v.18 no.2
    • /
    • pp.51-60
    • /
    • 2016
  • PURPOSES : The applicability of the mechanics-based similarity concept (suggested by Feng et al.) for determining scaled variables, including length and load, via laboratory-scale tests and discrete element analysis, was evaluated. METHODS: Several studies on the similarity concept were reviewed. The exact scaling approach, a similarity concept described by Feng, was applied in order to determine an analytical solution of a free-falling ball. This solution can be considered one of the simplest conditions for discrete element analysis. RESULTS : The results revealed that 1) the exact scaling approach can be used to determine the scale of variables in laboratory tests and numerical analysis, 2) applying only a scale factor, via the exact scaling approach, is inadequate for the error-free replacement of small particles by large ones during discrete element analysis, 3) the level of continuity of flowable materials such as SCC and cement mortar seems to be an important criterion for evaluating the applicability of the similarity concept, and 4) additional conditions, such as the kinetics of particle, contact model, and geometry, must be taken into consideration to achieve the maximum radius of replacement particles during discrete element analysis. CONCLUSIONS : The concept of similarity is a convenient tool to evaluate the correspondence of scaled laboratory test or numerical analysis to physical condition. However, to achieve excellent correspondence, additional factors, such as the kinetics of particles, contact model, and geometry, must be taken into consideration.

The assessment of sound quality of loudspeaker system by using factor analysis and muliti-dimensional scaling (인자분석과 다효원척를 이용한 스피이커의 음질평가)

  • 황영수;김영일;차일환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.16-24
    • /
    • 1984
  • The objective data and subjective data correlated in order to rate sound quality of loudspeaker system and these data were analyzed by the Factor Analysis and Multi-Dimensioinal Scaling. The dimensions yielded Factor Analysis were interpreted as "Contrast", "Metallic", "Rich", "Present" and their relation to physical variables were explored by studying the positions of loudspeaker systems in the respective dimension. When the subjective similarity degree of loudspeaker systems was compared with the objective similarity degree of loudspeaker systems by Multi-Dimensional Scaling, the similarity degree of sound pressure response in the listening room closely coincided with the subjective similarity degree regardless of sound source. This result implies the necessity of measurements taken not only in an anechoic room but also in a listening room in order to rate sound quality of loudspeaker systems.

  • PDF

COMPREHENSIVE SCALING METHOD WITH VALIDATION FOR APPLICATION TO SB-LOCAS OF A PASSIVE PWR

  • Lee, Sang-Il;No, Hee-Cheon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.263-269
    • /
    • 1996
  • A comprehensive scaling method is proposed for a scaled-down facility simulating SBLOCA in the CARR passive reactor (CP-1300). The present method consists of two stages: scaling methodology, and validation of scaling methodology and code. The present scaling methodology is based on the integral response scaling method. Through sensitivity study, the condensation of the top of the CMT is identified as one of the little-known phenomenon with high importance which should be addressed for the applicability of the code. Using the similarity of the derived scaling parameters, the major component geometries of the scaled-down facility are determined. In the case of 1/4 height and 1/100 area ratio scaling, it is found out that the power ratio is the same as the area ratio, and the present scaling methodology generates the design parameters of the scaled-down facility without any distortion.

  • PDF

Structural behavior of arch dams considering experimentally validated prototype model using similitude and scaling laws

  • Altunisik, Ahmet Can;Kalkan, Ebru;Basaga, Hasan B.
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.101-116
    • /
    • 2018
  • As one of the most important engineering structures, arch dams are huge constructions built with human hands and have strategical importance. Because of the fact that long construction duration, water supply, financial reasons, major loss of life and material since failure etc., the design of arch dams is very important problem and should be done by expert engineers to determine the structural behavior more accurately. Finite element analyses and non-destructive experimental measurements can be used to investigate the structural response, but there are some difficulties such as spending a long time while modelling, analysis and in-situ testing. Therefore, it is more useful to conduct the research on the laboratory conditions and to transform the obtained results into real constructions. Within the scope of this study, it is aimed to determine the structural behavior of arch dams considering experimentally validated prototype laboratory model using similitude and scaling laws. Type-1 arch dam, which is one of five arch dam types suggested at the "Arch Dams" Symposium in England in 1968 is selected as reference prototype model. The dam is built considering dam-reservoir-foundation interaction and ambient vibration tests are performed to validate the finite element results such as dynamic characteristics, displacements, principal stresses and strains. These results are considered as reference parameters and used to determine the real arch dam response with different scales factors such as 335, 400, 416.67 and 450. These values are selected by considering previously examined dam projects. Arch heights are calculated as 201 m, 240 m, 250 m and 270 m, respectively. The structural response is investigated between the model and prototype by using similarity requirements, field equations, scaling laws etc. To validate these results, finite element models are enlarged in the same scales and analyses are repeated to obtain the dynamic characteristics, displacements, principal stresses and strains. At the end of the study, it is seen that there is a good agreement between all results obtained by similarity requirements with scaling laws and enlarged finite element models.

A Study of Scaling Law for the Response of V-shape Structure Protecting Landmine (지뢰폭압 방호용 V형 구조물의 거동에 대한 상사법칙 연구)

  • Kim, Dong Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.5
    • /
    • pp.337-344
    • /
    • 2015
  • As many of armored vehicles are seriously exposed to threat of IEDs(Improvised Explosive Devices) in the Afghanistan war and the Iraq war. V-shaped military vehicles are deeply studied in order to protect crews and mounted soldiers against land mines. Generally the experiment on full-scaled V-shaped structure needs excessively high cost, which becomes a huge barrier to study. In this paper, we explore the possibility to make a half-scaled model of the V-shaped structure by using the geometric similarity scaling. We demonstrate the geometric similarity scaling between the original model and the half-scaled model is established on the momentum and deflections of structure via computer simulations and experiments. At this stage, we conduct only numerical analysis of predicting vibration of V-shaped structure because measuring vibration of structure is difficult in the mass-explosion experiment, which is remained as future work.

Full Scale Frictional Resistance Reduction Effect of a Low Frictional Marine Anti-fouling Paint based on a Similarity Scaling Method (상사축척법에 기반한 저마찰 선박 방오도료의 실선 마찰저항 저감성능 추정)

  • Yang, Jeong Woo;Park, Hyun;Lee, Inwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.1
    • /
    • pp.71-81
    • /
    • 2017
  • In this study, a series of full-scale extrapolation procedures based on the Granville's similarity scaling method, which was employed by Schultz (2007), is modified and then applied to compare the resistance performance between two different anti-fouling coatings. As an analysis example, the low frictional AF coating based on a novel skin-friction reducing polymer named FDR-SPC (Frictional Drag Reduction Self-Polishing Copolymer), which had been invented by the present author, is employed. The low frictional coating, which gives 25.4% skin frictional reduction in lab test, is estimated to give 18.2% total resistance reduction for a 176k DWT bulk carrier.

Scaling laws for vibration response of anti-symmetrically laminated plates

  • Singhatanadgid, Pairod;Ungbhakorn, Variddhi
    • Structural Engineering and Mechanics
    • /
    • v.14 no.3
    • /
    • pp.345-364
    • /
    • 2002
  • The scaling laws for vibration response of anti-symmetrically laminated plates are derived by applying the similitude transformation to the governing differential equations directly. With this approach, a closed-form solution of the governing equations is not required. This is a significant advantage over the method employed by other researchers where similitude transformation is applied to the closed-form solution. The scaling laws are tested by comparing the similitude fundamental frequencies to the theoretical fundamental frequencies determined from the available closed-form solutions. In case of complete similitude, similitude solutions from the scaling laws exactly agree with the theoretical solutions. Sometimes, it may not be feasible to select the model which obeys the similarity requirement completely, therefore partial similitude is theoretically investigated and approximate scaling laws are recommended. The distorted models in stacking sequences and laminated material properties demonstrate reasonable accuracy. On the contrary, a model with distortion in fiber angle is not recommended. The derived scaling laws are very useful to determine the vibration response of complex prototypes by performing the experiment on a model with required similarities.

Analysis of NOx Emissions in Thrbulent Nonpremixed Hydrogen-Air Jet Flames with Coaxial Air (동축 수소 확산화염에서의 NOx 생성 분석)

  • Park, Y.H.;Kim, S.L.;Moon, H.J.;Yoon, Y.B.;Jeung, I.S.
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.1
    • /
    • pp.19-30
    • /
    • 2000
  • The characteristics of NOx emissions in pure hydrogen nonpremixed flames with coaxial air are analyzed numerically for the three model cases of coaxial air flames classified by varying coaxial air velocity and/or fuel velocity. In coaxial air flames, the flame length is reduced by coaxial air and can be represented as a function of the ratio of coaxial air to fuel velocity. Coaxial air decreases flame reaction zone, resulting in reducing flame residence time significantly. Finally, the large reduction of EINOx is achieved by the decrease of the flame residence time. It is found that because coaxial air can break down the flame self-similarity law, appropriate scaling parameters, which are different from those in the simple jet flames, are recommended. In coaxial air flames, the flame residence time based on the flame volume produces better results than that based on a cube of the flame length. And some portion of deviations from the 1/2 scaling law by coaxial air may be due to the violation of the linear relationship between the flame volume and the flame reaction zone.

  • PDF

Comparison Between Core Affect Dimensional Structures of Different Ages using Representational Similarity Analysis (표상 유사성 분석을 이용한 연령별 얼굴 정서 차원 비교)

  • Jongwan Kim
    • Science of Emotion and Sensibility
    • /
    • v.26 no.1
    • /
    • pp.33-42
    • /
    • 2023
  • Previous emotion studies employing facial expressions have focused on the differences between age groups for each of the emotion categories. Instead, Kim (2021) has compared representations of facial expressions in the lower-dimensional emotion space. However, he reported descriptive comparisons without statistical significance testing. This research used representational similarity analysis (Kriegeskorte et al., 2008) to directly compare empirical datasets from young, middle-aged, and old groups and conceptual models. In addition, individual differences multidimensional scaling (Carroll & Chang, 1970) was conducted to explore individual weights on the emotional dimensions for each age group. The results revealed that the old group was the least similar to the other age groups in the empirical datasets and the valence model. In addition, the arousal dimension was the least weighted for the old group compared to the other groups. This study directly tested the differences between the three age groups in terms of empirical datasets, conceptual models, and weights on the emotion dimensions.