The Journal of The Korea Institute of Intelligent Transport Systems
/
v.12
no.1
/
pp.81-87
/
2013
In this paper, we propose a music search algorithm for automotive infotainment system. The proposed method extracts fingerprints using the high peaks based on log-spectrum of the music signal, and the extracted music fingerprints store in cloud server applying a hash value. In the cloud server, the most similar music is retrieved by comparing the user's query music with the fingerprints stored in hash table of cloud server. To evaluate the performance of the proposed music search algorithm, we measure an accuracy of the retrieved results according to various length of the query music and measure a retrieval time according to the number of stored music database in hash table.
The pitch tracking of music has been researched for several decades. Several possible improvements are available for creating a good t-distribution, using the instantaneous robust algorithm for pitch tracking framework to perfectly detect pitch. This article shows how to detect the pitch of music utilizing an improved detection method which applies a statistical method; this approach uses a pitch track, or a sequence of frequency bin numbers. This sequence is used to create an index that offers useful features for comparing similar songs. The pitch frequency spectrum is extracted using a modified instantaneous robust algorithm for pitch tracking (IRAPT) as a base combined with the statistical method. The pitch detection algorithm was implemented, and the percentage of performance matching in Thai classical music was assessed in order to test the accuracy of the algorithm. We used the longest common subsequence to compare the similarities in pitch sequence alignments in the music. The experimental results of this research show that the accuracy of retrieval of Thai classical music using the t-distribution of instantaneous robust algorithm for pitch tracking (t-IRAPT) is 99.01%, and is in the top five ranking, with the shortest query sample being five seconds long.
So far, many researches have been done to retrieve music information using static classification descriptors such as genre and mood. Since static classification descriptors are based on diverse content-based musical features, they are effective in retrieving similar music in terms of such features. However, human emotion or mood transition triggered by music enables more effective and sophisticated query in music retrieval. So far, few works have been done to evaluate the effect of human mood transition by music. Using formal representation of such mood transitions, we can provide personalized service more effectively in the new applications such as music recommendation. In this paper, we first propose our Emotion State Transition Model (ESTM) for describing human mood transition by music and then describe a music classification and recommendation scheme based on the ESTM. In the experiment, diverse content-based features were extracted from music clips, dimensionally reduced by NMF (Non-negative Matrix Factorization, and classified by SVM (Support Vector Machine). In the performance analysis, we achieved average accuracy 67.54% and maximum accuracy 87.78%.
Recently, the study of efficient way to store and retrieve enormous music data is becoming the one of important issues in the multimedia database. Most general method of MIR (Music Information Retrieval) includes a text-based approach using text information to search a desired music. However, if users did not remember the keyword about the music, it can not give them correct answers. Moreover, since these types of systems are implemented only for exact matching between the query and music data, it can not mine any information on similar music data. Thus, these systems are inappropriate to achieve similarity matching of music data. In order to solve the problem, we propose an Efficient Query-By-Humming System (EQBHS) with a content-based indexing method that efficiently retrieve and store music when a user inquires with his incorrect humming. For the purpose of accelerating query processing in EQBHS, we design indices for significant melodies, which are 1) frequent melodies occurring many times in a single music, on the assumption that users are to hum what they can easily remember and 2) melodies partitioned by rests. In addition, we propose an error tolerated mapping method from a note to a character to make searching efficient, and the frequent melody extraction algorithm. We verified the assumption for frequent melodies by making up questions and compared the performance of the proposed EQBHS with N-gram by executing various experiments with a number of music data.
Feature-based similarity retrieval has become an important research issue in multimedia database systems. The features of multimedia data are useful for discriminating between multimedia objects (e 'g', documents, images, video, music score, etc.). For example, images are represented by their color histograms, texture vectors, and shape descriptors, and are usually high-dimensional data. The performance of conventional multidimensional data structures(e'g', R- Tree family, K-D-B tree, grid file, TV-tree) tends to deteriorate as the number of dimensions of feature vectors increases. The R*-tree is the most successful variant of the R-tree. In this paper, we propose a SOM-based R*-tree as a new indexing method for high-dimensional feature vectors.The SOM-based R*-tree combines SOM and R*-tree to achieve search performance more scalable to high dimensionalities. Self-Organizing Maps (SOMs) provide mapping from high-dimensional feature vectors onto a two dimensional space. The mapping preserves the topology of the feature vectors. The map is called a topological of the feature map, and preserves the mutual relationship (similarity) in the feature spaces of input data, clustering mutually similar feature vectors in neighboring nodes. Each node of the topological feature map holds a codebook vector. A best-matching-image-list. (BMIL) holds similar images that are closest to each codebook vector. In a topological feature map, there are empty nodes in which no image is classified. When we build an R*-tree, we use codebook vectors of topological feature map which eliminates the empty nodes that cause unnecessary disk access and degrade retrieval performance. We experimentally compare the retrieval time cost of a SOM-based R*-tree with that of an SOM and an R*-tree using color feature vectors extracted from 40, 000 images. The result show that the SOM-based R*-tree outperforms both the SOM and R*-tree due to the reduction of the number of nodes required to build R*-tree and retrieval time cost.
For western music there has been a volume of researches on music information analysis for automatic transcription or content-based music retrieval. But it is hard to find the similar research on Korean traditional music. In this paper we propose several algorithms to automatically analyze the structure of Korean traditional music 'Pansori'. The proposed algorithm automatically distinguishes between the 'sound' part and 'speech' part which are named 'sori' and 'aniri', respectively, using the ratio of phonetic and pause time intervals. For rhythm called 'jangdan' classification the algorithm makes the robust decision using the majority voting process based on template matching. Also an algorithm is suggested to detect the bar positions in the 'sori' part based on Kalman filter. Every proposed algorithm in the paper works so well enough for the sample music sources of 'Pansori' that the results may be used to automatically transcribe the 'Pansori'.
Journal of the Institute of Convergence Signal Processing
/
v.2
no.1
/
pp.38-43
/
2001
This Paper suggests a new feature for shot detection, using the proposed robust feature from the DC image constructed by DCT DC coefficients in the MPEG video stream, and proposes the characterizing value that reflects the characteristic of kind of video (movie, drama, news, music video etc.). The key frames are pulled out from many frames by using the local minima and maxima of differential of the value. After original frame(not do image) are reconstructed for key frame, indexing process is performed through computing parameters. Key frames that are similar to user's query image are retrieved through computing parameters. It is proved that the proposed methods are better than conventional method from experiments. The retrieval accuracy rate is so high in experiments.
Moon, Chang Bae;Kim, HyunSoo;Jang, Young-Wan;Kim, Byeong Man
Science of Emotion and Sensibility
/
v.16
no.1
/
pp.53-64
/
2013
Folksonomies have potential problems caused by synonyms, tagging level, neologisms and so forth when retrieving music by tags. These problems can be tackled by introducing the mood intensity (Arousal and Valence value) of music as its internal tag. That is, if moods of music pieces and their mood tags are all represented internally by numeric values, A (Arousal) value and V (Valence) value, and they are retrieved by these values, then music pieces having similar mood with the mood tag of a query can be retrieved based on the similarity of their AV values though their tags are not exactly matched with the query. As a prerequisite study, in this paper, we propose the mapping table defining the relation between AV values and folksonomy tags. For analysis of the association between AV values and tags, ANOVA tests are performed on the test data collected from the well known music retrieval site last.fm. The results show that the P values for A values and V values are 0.0, which means the null hypotheses could be rejected and the alternative hypotheses could be adopted. Consequently, it is verified that the distribution of AV values depends on folksonomy tags.
Journal of the Korean Society for information Management
/
v.19
no.3
/
pp.5-30
/
2002
In this paper, classification feature is selected with focus of musical content, note sequences pattern, and measures similarity between note sequences followed by constructing clusters by similar note sequences, which is easier for users to search by showing the similar note sequences with the search result in the CBMR system. Experimental document was $\ulcorner$A Dictionary of Musical Themes$\lrcorner$, the index of theme bar focused on classical music and obtained kern-type file. Humdrum Toolkit version 1.0 was used as note sequences treat tool. The hierarchical clustering method is by stages focused on four-type similarity matrices by whether the note sequences segmentation or not and where the starting point is. For the measurement of the result, WACS standard is used in the case of being manual classification and in the case of the note sequences starling from any point in the note sequences, there is used common feature pattern distribution in the cluster obtained from the clustering result. According to the result, clustering with segmented feature unconnected with the starting point Is higher with distinct difference compared with clustering with non-segmented feature.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.38
no.5
/
pp.58-64
/
2001
Recently many informations are transmitted ,md stored as video data, and they are on the rapid increase because of popularization of high performance computer and internet. In this paper, to retrieve video data, shots are found through analysis of video stream and the method of detection of key frame is studied. Finally users can retrieve the video efficiently. This Paper suggests a new feature that is robust to object movement in a shot and is not sensitive to change of color in boundary detection of shots, and proposes the characterizing value that reflects the characteristic of kind of video (movie, drama, news, music video etc,). The key frames are pulled out from many frames by using the local minima and maxima of differential of the value. After original frame(not de image) are reconstructed for key frame, indexing process is performed through computing parameters. Key frames that arc similar to user's query image arc retrieved through computing parameters. It is proved that the proposed methods are better than conventional method from experiments. The retrieval accuracy rate is so high in experiments.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.