• Title/Summary/Keyword: Similar music retrieval

Search Result 21, Processing Time 0.025 seconds

Music Search Algorithm for Automotive Infotainment System (자동차 환경의 인포테인먼트 시스템을 위한 음악 검색 알고리즘)

  • Kim, Hyoung-Gook;Kim, Jae-Man
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.1
    • /
    • pp.81-87
    • /
    • 2013
  • In this paper, we propose a music search algorithm for automotive infotainment system. The proposed method extracts fingerprints using the high peaks based on log-spectrum of the music signal, and the extracted music fingerprints store in cloud server applying a hash value. In the cloud server, the most similar music is retrieved by comparing the user's query music with the fingerprints stored in hash table of cloud server. To evaluate the performance of the proposed music search algorithm, we measure an accuracy of the retrieved results according to various length of the query music and measure a retrieval time according to the number of stored music database in hash table.

Thai Classical Music Matching Using t-Distribution on Instantaneous Robust Algorithm for Pitch Tracking Framework

  • Boonmatham, Pheerasut;Pongpinigpinyo, Sunee;Soonklang, Tasanawan
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1213-1228
    • /
    • 2017
  • The pitch tracking of music has been researched for several decades. Several possible improvements are available for creating a good t-distribution, using the instantaneous robust algorithm for pitch tracking framework to perfectly detect pitch. This article shows how to detect the pitch of music utilizing an improved detection method which applies a statistical method; this approach uses a pitch track, or a sequence of frequency bin numbers. This sequence is used to create an index that offers useful features for comparing similar songs. The pitch frequency spectrum is extracted using a modified instantaneous robust algorithm for pitch tracking (IRAPT) as a base combined with the statistical method. The pitch detection algorithm was implemented, and the percentage of performance matching in Thai classical music was assessed in order to test the accuracy of the algorithm. We used the longest common subsequence to compare the similarities in pitch sequence alignments in the music. The experimental results of this research show that the accuracy of retrieval of Thai classical music using the t-distribution of instantaneous robust algorithm for pitch tracking (t-IRAPT) is 99.01%, and is in the top five ranking, with the shortest query sample being five seconds long.

Emotion Transition Model based Music Classification Scheme for Music Recommendation (음악 추천을 위한 감정 전이 모델 기반의 음악 분류 기법)

  • Han, Byeong-Jun;Hwang, Een-Jun
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.159-166
    • /
    • 2009
  • So far, many researches have been done to retrieve music information using static classification descriptors such as genre and mood. Since static classification descriptors are based on diverse content-based musical features, they are effective in retrieving similar music in terms of such features. However, human emotion or mood transition triggered by music enables more effective and sophisticated query in music retrieval. So far, few works have been done to evaluate the effect of human mood transition by music. Using formal representation of such mood transitions, we can provide personalized service more effectively in the new applications such as music recommendation. In this paper, we first propose our Emotion State Transition Model (ESTM) for describing human mood transition by music and then describe a music classification and recommendation scheme based on the ESTM. In the experiment, diverse content-based features were extracted from music clips, dimensionally reduced by NMF (Non-negative Matrix Factorization, and classified by SVM (Support Vector Machine). In the performance analysis, we achieved average accuracy 67.54% and maximum accuracy 87.78%.

  • PDF

An Efficient Frequent Melody Indexing Method to Improve Performance of Query-By-Humming System (허밍 질의 처리 시스템의 성능 향상을 위한 효율적인 빈번 멜로디 인덱싱 방법)

  • You, Jin-Hee;Park, Sang-Hyun
    • Journal of KIISE:Databases
    • /
    • v.34 no.4
    • /
    • pp.283-303
    • /
    • 2007
  • Recently, the study of efficient way to store and retrieve enormous music data is becoming the one of important issues in the multimedia database. Most general method of MIR (Music Information Retrieval) includes a text-based approach using text information to search a desired music. However, if users did not remember the keyword about the music, it can not give them correct answers. Moreover, since these types of systems are implemented only for exact matching between the query and music data, it can not mine any information on similar music data. Thus, these systems are inappropriate to achieve similarity matching of music data. In order to solve the problem, we propose an Efficient Query-By-Humming System (EQBHS) with a content-based indexing method that efficiently retrieve and store music when a user inquires with his incorrect humming. For the purpose of accelerating query processing in EQBHS, we design indices for significant melodies, which are 1) frequent melodies occurring many times in a single music, on the assumption that users are to hum what they can easily remember and 2) melodies partitioned by rests. In addition, we propose an error tolerated mapping method from a note to a character to make searching efficient, and the frequent melody extraction algorithm. We verified the assumption for frequent melodies by making up questions and compared the performance of the proposed EQBHS with N-gram by executing various experiments with a number of music data.

Feature-Based Image Retrieval using SOM-Based R*-Tree

  • Shin, Min-Hwa;Kwon, Chang-Hee;Bae, Sang-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.223-230
    • /
    • 2003
  • Feature-based similarity retrieval has become an important research issue in multimedia database systems. The features of multimedia data are useful for discriminating between multimedia objects (e 'g', documents, images, video, music score, etc.). For example, images are represented by their color histograms, texture vectors, and shape descriptors, and are usually high-dimensional data. The performance of conventional multidimensional data structures(e'g', R- Tree family, K-D-B tree, grid file, TV-tree) tends to deteriorate as the number of dimensions of feature vectors increases. The R*-tree is the most successful variant of the R-tree. In this paper, we propose a SOM-based R*-tree as a new indexing method for high-dimensional feature vectors.The SOM-based R*-tree combines SOM and R*-tree to achieve search performance more scalable to high dimensionalities. Self-Organizing Maps (SOMs) provide mapping from high-dimensional feature vectors onto a two dimensional space. The mapping preserves the topology of the feature vectors. The map is called a topological of the feature map, and preserves the mutual relationship (similarity) in the feature spaces of input data, clustering mutually similar feature vectors in neighboring nodes. Each node of the topological feature map holds a codebook vector. A best-matching-image-list. (BMIL) holds similar images that are closest to each codebook vector. In a topological feature map, there are empty nodes in which no image is classified. When we build an R*-tree, we use codebook vectors of topological feature map which eliminates the empty nodes that cause unnecessary disk access and degrade retrieval performance. We experimentally compare the retrieval time cost of a SOM-based R*-tree with that of an SOM and an R*-tree using color feature vectors extracted from 40, 000 images. The result show that the SOM-based R*-tree outperforms both the SOM and R*-tree due to the reduction of the number of nodes required to build R*-tree and retrieval time cost.

  • PDF

Structural Analysis Algorithm for Automatic Transcription 'Pansori' (판소리 자동채보를 위한 구조분석 알고리즘)

  • Ju, Young-Ho;Kim, Joon-Cheol;Seo, Kyoung-Suk;Lee, Joon-Whoan
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.2
    • /
    • pp.28-38
    • /
    • 2014
  • For western music there has been a volume of researches on music information analysis for automatic transcription or content-based music retrieval. But it is hard to find the similar research on Korean traditional music. In this paper we propose several algorithms to automatically analyze the structure of Korean traditional music 'Pansori'. The proposed algorithm automatically distinguishes between the 'sound' part and 'speech' part which are named 'sori' and 'aniri', respectively, using the ratio of phonetic and pause time intervals. For rhythm called 'jangdan' classification the algorithm makes the robust decision using the majority voting process based on template matching. Also an algorithm is suggested to detect the bar positions in the 'sori' part based on Kalman filter. Every proposed algorithm in the paper works so well enough for the sample music sources of 'Pansori' that the results may be used to automatically transcribe the 'Pansori'.

Shot boundary Frame Detection and Key Frame Detection for Multimedia Retrieval (멀티미디어 검색을 위한 shot 경계 및 대표 프레임 추출)

  • 강대성;김영호
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.1
    • /
    • pp.38-43
    • /
    • 2001
  • This Paper suggests a new feature for shot detection, using the proposed robust feature from the DC image constructed by DCT DC coefficients in the MPEG video stream, and proposes the characterizing value that reflects the characteristic of kind of video (movie, drama, news, music video etc.). The key frames are pulled out from many frames by using the local minima and maxima of differential of the value. After original frame(not do image) are reconstructed for key frame, indexing process is performed through computing parameters. Key frames that are similar to user's query image are retrieved through computing parameters. It is proved that the proposed methods are better than conventional method from experiments. The retrieval accuracy rate is so high in experiments.

  • PDF

Analysis of Association between Mood of Music and Folksonomy Tag (음악의 분위기와 폭소노미 태그의 관계 분석)

  • Moon, Chang Bae;Kim, HyunSoo;Jang, Young-Wan;Kim, Byeong Man
    • Science of Emotion and Sensibility
    • /
    • v.16 no.1
    • /
    • pp.53-64
    • /
    • 2013
  • Folksonomies have potential problems caused by synonyms, tagging level, neologisms and so forth when retrieving music by tags. These problems can be tackled by introducing the mood intensity (Arousal and Valence value) of music as its internal tag. That is, if moods of music pieces and their mood tags are all represented internally by numeric values, A (Arousal) value and V (Valence) value, and they are retrieved by these values, then music pieces having similar mood with the mood tag of a query can be retrieved based on the similarity of their AV values though their tags are not exactly matched with the query. As a prerequisite study, in this paper, we propose the mapping table defining the relation between AV values and folksonomy tags. For analysis of the association between AV values and tags, ANOVA tests are performed on the test data collected from the well known music retrieval site last.fm. The results show that the P values for A values and V values are 0.0, which means the null hypotheses could be rejected and the alternative hypotheses could be adopted. Consequently, it is verified that the distribution of AV values depends on folksonomy tags.

  • PDF

A Study on the Musical Theme Clustering for Searching Note Sequences (음렬 탐색을 위한 주제소절 자동분류에 관한 연구)

  • 심지영;김태수
    • Journal of the Korean Society for information Management
    • /
    • v.19 no.3
    • /
    • pp.5-30
    • /
    • 2002
  • In this paper, classification feature is selected with focus of musical content, note sequences pattern, and measures similarity between note sequences followed by constructing clusters by similar note sequences, which is easier for users to search by showing the similar note sequences with the search result in the CBMR system. Experimental document was $\ulcorner$A Dictionary of Musical Themes$\lrcorner$, the index of theme bar focused on classical music and obtained kern-type file. Humdrum Toolkit version 1.0 was used as note sequences treat tool. The hierarchical clustering method is by stages focused on four-type similarity matrices by whether the note sequences segmentation or not and where the starting point is. For the measurement of the result, WACS standard is used in the case of being manual classification and in the case of the note sequences starling from any point in the note sequences, there is used common feature pattern distribution in the cluster obtained from the clustering result. According to the result, clustering with segmented feature unconnected with the starting point Is higher with distinct difference compared with clustering with non-segmented feature.

Retrieval System Adopting Statistical Feature of MPEG Video (MPEG 비디오의 통계적 특성을 이용한 검색 시스템)

  • Yu, Young-Dal;Kang, Dae-Seong;Kim, Dai-Jin
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.38 no.5
    • /
    • pp.58-64
    • /
    • 2001
  • Recently many informations are transmitted ,md stored as video data, and they are on the rapid increase because of popularization of high performance computer and internet. In this paper, to retrieve video data, shots are found through analysis of video stream and the method of detection of key frame is studied. Finally users can retrieve the video efficiently. This Paper suggests a new feature that is robust to object movement in a shot and is not sensitive to change of color in boundary detection of shots, and proposes the characterizing value that reflects the characteristic of kind of video (movie, drama, news, music video etc,). The key frames are pulled out from many frames by using the local minima and maxima of differential of the value. After original frame(not de image) are reconstructed for key frame, indexing process is performed through computing parameters. Key frames that arc similar to user's query image arc retrieved through computing parameters. It is proved that the proposed methods are better than conventional method from experiments. The retrieval accuracy rate is so high in experiments.

  • PDF